本文主要研究内容
作者(2019)在《In-plane attenuation zone and its optimization in a plate with periodic holes》一文中研究指出:It is difficult to design a plate with wide attenuation zones in low frequency region based on Bragg scattering mechanism. A plate with periodic rhombic holes is optimized and designed. Based on the finite element method under periodic boundary conditions, the in-plane dispersion curves of periodically perforated plate are calculated via COMSOL. The frequency responses of periodically perforated plate axe investigated via ANSYS simulation. The plates with periodic holes are suspended and dynamically tested under sinusoidal excitations. The results show that a periodically perforated plate with rhombus holes has wider attenuation zones than plates with circular and hexagonal holes. Material properties have a great influence on attenuation zones: nitrile-butadiene rubber and silicon rubber can easily obtain low-frequency zones, while increasing porosity creates lower and wider zones. The width of attenuation zone increases as the horizontal angle of the rhombus holes increases. An analysis of the attenuation zones* generation mechanism shows that the plate with periodic holes exhibits characteristics of Bragg scattering and local resonant phononic crystal, indicating an inherent relationship between two types of mechanisms. The optimized plate has a complete attenuation zone ranging from 5281.76-8824.30 Hz. The vibrations are significantly reduced when the number of periods is no less than two. The attenuation range obtained via the numerical method is generally consistent with the experiment. The research sheds light on the noise insulation plate and has the potential to improve the sound environment in various applications due to its simple manufacturing.
Abstract
It is difficult to design a plate with wide attenuation zones in low frequency region based on Bragg scattering mechanism. A plate with periodic rhombic holes is optimized and designed. Based on the finite element method under periodic boundary conditions, the in-plane dispersion curves of periodically perforated plate are calculated via COMSOL. The frequency responses of periodically perforated plate axe investigated via ANSYS simulation. The plates with periodic holes are suspended and dynamically tested under sinusoidal excitations. The results show that a periodically perforated plate with rhombus holes has wider attenuation zones than plates with circular and hexagonal holes. Material properties have a great influence on attenuation zones: nitrile-butadiene rubber and silicon rubber can easily obtain low-frequency zones, while increasing porosity creates lower and wider zones. The width of attenuation zone increases as the horizontal angle of the rhombus holes increases. An analysis of the attenuation zones* generation mechanism shows that the plate with periodic holes exhibits characteristics of Bragg scattering and local resonant phononic crystal, indicating an inherent relationship between two types of mechanisms. The optimized plate has a complete attenuation zone ranging from 5281.76-8824.30 Hz. The vibrations are significantly reduced when the number of periods is no less than two. The attenuation range obtained via the numerical method is generally consistent with the experiment. The research sheds light on the noise insulation plate and has the potential to improve the sound environment in various applications due to its simple manufacturing.
论文参考文献
论文详细介绍
论文作者分别是来自Chinese Journal of Acoustics的,发表于刊物Chinese Journal of Acoustics2019年01期论文,是一篇关于,Chinese Journal of Acoustics2019年01期论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自Chinese Journal of Acoustics2019年01期论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。