郭晨:基于第二相调控Mg-Sn基合金组织和性能的研究论文

郭晨:基于第二相调控Mg-Sn基合金组织和性能的研究论文

本文主要研究内容

作者郭晨(2019)在《基于第二相调控Mg-Sn基合金组织和性能的研究》一文中研究指出:镁及镁合金在交通运输、空天领域、电子通讯及国防等领域中具有广阔的应用前景,被誉为“21世纪最具发展的绿色工程材料”。Mg-Sn系合金由于具有高熔点的Mg2Sn相(1043 K),使得该合金系具有良好的变形能力和沉淀强化效应,从而使得其综合性能优于传统的Mg-Al和Mg-Zn系合金,在开发高强韧变形镁合金方面具有极大潜力。另外,在Mg-Sn基合金的基础上,通过添加适当比例的Zn和Al元素会诱发Mg-Zn-Al准晶相的形成并细化Mg2Sn相,同时Al元素也会起到固溶强化作用,从而大幅度提高Mg-Sn系合金的综合力学性能和热稳定性,为开发不含稀土的耐热镁合金提供了一种可行性。另外,为了缓解传统材料开发对资源过分依赖的现状,低合金化镁合金的开发越来越受到关注。为了开发高强韧Mg-Sn基低合金化镁合金,本文采用Ca和Mn对低合金化Mg-Sn基合金进行组织调控,期望Mn、Ca元素的添加能够改变织构、细化组织,提高合金的强韧性和变形能力。因此,本文研究了含有准晶相的Mg-8Sn-6Zn-2Al(TZA862)合金的时效强化行为。同时为了开发低合金化Mg-Sn基合金,研究了不同挤压比和Sn含量对低合金化Mg-Sn-Mn-Ca合金系的组织和性能的影响。研究结果表明:(1)研究发现,双级时效168 h后,Mg-8Sn-6Zn-2Al合金的硬度增加到峰值87 HV,双级时效处理对该合金的晶粒尺寸、析出相取向和析出相体积分数以及织构的性质有较大的影响,导致晶粒尺寸增大、析出相的体积分数增大(晶界处形核),织构取向和强度的改变。(2)峰时效态Mg-8Sn-6Zn-2Al合金具有较高的强度(257 MPa)和合理的伸长率(13.6%),这主要与纳米尺寸的析出相以及合理的加工硬化指数有关。(3)挤压态低合金化Mg-Sn-Mn-Ca合金系(挤压比:36)表现出完全动态再结晶组织和ED-倾斜取向织构。随着Sn含量从0.5增加到1.0 wt.%,平均晶粒尺寸从13.6逐渐减小到12.25μm,而织构强度从5.82增加到9.23。此外,在某些微区还可以检测到一些纳米级和/或亚微米级的Mg2Sn和Mg2Ca析出相,其形貌特征为Mg2Sn与Mg2Ca共存。(4)挤压态Mg-Sn-Mn-Ca合金系(挤压比:36)的Meyer指数n小于2,表明其具有较强的压痕尺寸效应。挤压态Mg-1Sn-0.5Mn-0.5Ca合金表现出良好的综合力学性能,这主要和细小的晶粒结构、较高的ED-倾斜取向织构强度和合理的加工硬化指数有关。(5)当挤压比由36降低为16时,Mg-Sn-Mn-Ca合金系表现出双峰结构:均匀细化的动态再结晶晶粒和沿着挤压方向拉长的粗大未动态再结晶晶粒。平均动态再结晶晶粒尺寸从13.60μm(0.5Sn)和12.25μm(1.0Sn)减小到7.8μm(0.5Sn)和7.1μm(1.0Sn),抗拉强度和伸长率同步下降,由此可见,挤压比的降低会削弱合金的力学性能,这主要和组织中出现的粗大的未动态再结晶晶粒有关。(6)当挤压比由36降低为16,挤压态合金的Meyer指数n有所增加,分别从1.74(0.5Sn)和1.84(1.0Sn)增加到1.86(0.5Sn)和1.89(1.0Sn)。上述结果表明大挤压比能够增强研究合金系的压痕尺寸效应。

Abstract

mei ji mei ge jin zai jiao tong yun shu 、kong tian ling yu 、dian zi tong xun ji guo fang deng ling yu zhong ju you an kuo de ying yong qian jing ,bei yu wei “21shi ji zui ju fa zhan de lu se gong cheng cai liao ”。Mg-Snji ge jin you yu ju you gao rong dian de Mg2Snxiang (1043 K),shi de gai ge jin ji ju you liang hao de bian xing neng li he chen dian jiang hua xiao ying ,cong er shi de ji zeng ge xing neng you yu chuan tong de Mg-Alhe Mg-Znji ge jin ,zai kai fa gao jiang ren bian xing mei ge jin fang mian ju you ji da qian li 。ling wai ,zai Mg-Snji ge jin de ji chu shang ,tong guo tian jia kuo dang bi li de Znhe Alyuan su hui you fa Mg-Zn-Alzhun jing xiang de xing cheng bing xi hua Mg2Snxiang ,tong shi Alyuan su ye hui qi dao gu rong jiang hua zuo yong ,cong er da fu du di gao Mg-Snji ge jin de zeng ge li xue xing neng he re wen ding xing ,wei kai fa bu han xi tu de nai re mei ge jin di gong le yi chong ke hang xing 。ling wai ,wei le huan jie chuan tong cai liao kai fa dui zi yuan guo fen yi lai de xian zhuang ,di ge jin hua mei ge jin de kai fa yue lai yue shou dao guan zhu 。wei le kai fa gao jiang ren Mg-Snji di ge jin hua mei ge jin ,ben wen cai yong Cahe Mndui di ge jin hua Mg-Snji ge jin jin hang zu zhi diao kong ,ji wang Mn、Cayuan su de tian jia neng gou gai bian zhi gou 、xi hua zu zhi ,di gao ge jin de jiang ren xing he bian xing neng li 。yin ci ,ben wen yan jiu le han you zhun jing xiang de Mg-8Sn-6Zn-2Al(TZA862)ge jin de shi xiao jiang hua hang wei 。tong shi wei le kai fa di ge jin hua Mg-Snji ge jin ,yan jiu le bu tong ji ya bi he Snhan liang dui di ge jin hua Mg-Sn-Mn-Cage jin ji de zu zhi he xing neng de ying xiang 。yan jiu jie guo biao ming :(1)yan jiu fa xian ,shuang ji shi xiao 168 hhou ,Mg-8Sn-6Zn-2Alge jin de ying du zeng jia dao feng zhi 87 HV,shuang ji shi xiao chu li dui gai ge jin de jing li che cun 、xi chu xiang qu xiang he xi chu xiang ti ji fen shu yi ji zhi gou de xing zhi you jiao da de ying xiang ,dao zhi jing li che cun zeng da 、xi chu xiang de ti ji fen shu zeng da (jing jie chu xing he ),zhi gou qu xiang he jiang du de gai bian 。(2)feng shi xiao tai Mg-8Sn-6Zn-2Alge jin ju you jiao gao de jiang du (257 MPa)he ge li de shen chang lv (13.6%),zhe zhu yao yu na mi che cun de xi chu xiang yi ji ge li de jia gong ying hua zhi shu you guan 。(3)ji ya tai di ge jin hua Mg-Sn-Mn-Cage jin ji (ji ya bi :36)biao xian chu wan quan dong tai zai jie jing zu zhi he ED-qing xie qu xiang zhi gou 。sui zhao Snhan liang cong 0.5zeng jia dao 1.0 wt.%,ping jun jing li che cun cong 13.6zhu jian jian xiao dao 12.25μm,er zhi gou jiang du cong 5.82zeng jia dao 9.23。ci wai ,zai mou xie wei ou hai ke yi jian ce dao yi xie na mi ji he /huo ya wei mi ji de Mg2Snhe Mg2Caxi chu xiang ,ji xing mao te zheng wei Mg2Snyu Mg2Cagong cun 。(4)ji ya tai Mg-Sn-Mn-Cage jin ji (ji ya bi :36)de Meyerzhi shu nxiao yu 2,biao ming ji ju you jiao jiang de ya hen che cun xiao ying 。ji ya tai Mg-1Sn-0.5Mn-0.5Cage jin biao xian chu liang hao de zeng ge li xue xing neng ,zhe zhu yao he xi xiao de jing li jie gou 、jiao gao de ED-qing xie qu xiang zhi gou jiang du he ge li de jia gong ying hua zhi shu you guan 。(5)dang ji ya bi you 36jiang di wei 16shi ,Mg-Sn-Mn-Cage jin ji biao xian chu shuang feng jie gou :jun yun xi hua de dong tai zai jie jing jing li he yan zhao ji ya fang xiang la chang de cu da wei dong tai zai jie jing jing li 。ping jun dong tai zai jie jing jing li che cun cong 13.60μm(0.5Sn)he 12.25μm(1.0Sn)jian xiao dao 7.8μm(0.5Sn)he 7.1μm(1.0Sn),kang la jiang du he shen chang lv tong bu xia jiang ,you ci ke jian ,ji ya bi de jiang di hui xiao ruo ge jin de li xue xing neng ,zhe zhu yao he zu zhi zhong chu xian de cu da de wei dong tai zai jie jing jing li you guan 。(6)dang ji ya bi you 36jiang di wei 16,ji ya tai ge jin de Meyerzhi shu nyou suo zeng jia ,fen bie cong 1.74(0.5Sn)he 1.84(1.0Sn)zeng jia dao 1.86(0.5Sn)he 1.89(1.0Sn)。shang shu jie guo biao ming da ji ya bi neng gou zeng jiang yan jiu ge jin ji de ya hen che cun xiao ying 。

论文参考文献

  • [1].Cu-(0.5~0.6)Cr-xZr合金“成分-工艺-组织-性能”构效关系研究[D]. 陈金水.江西理工大学2019
  • [2].置氢Ti-55高温钛合金超塑变形特性研究[D]. 王珅.上海交通大学2016
  • [3].高强韧压铸Al-Si(Mg)合金组织与性能研究[D]. 陈超.上海交通大学2018
  • [4].纳米析出对CoCrFeNiTi0.2高熵合金室温及低温力学性能的影响[D]. 张瀚文.太原理工大学2019
  • [5].Sm对Mg-5Zn-0.5Y-0.6Zr-0.5Ca合金显微组织和力学性能的影响[D]. 朱宁.哈尔滨理工大学2019
  • [6].抗菌Ti-Cu合金的组织与性能研究[D]. 王杰闻.中国科学技术大学2019
  • [7].Zr、Cu对Al-Cu-Mg-Ag合金的蠕变性能和微观组织的影响[D]. 夏雅阁.郑州大学2019
  • [8].Mg-Li-Al-Zn-Si合金热变形行为及挤压工艺研究[D]. 高守阳.北京有色金属研究总院2019
  • [9].塑性变形对Mg-14Li-1Zn合金显微组织及力学性能的影响[D]. 付坤宁.哈尔滨工程大学2019
  • [10].新型Mg-Er-Y-Zn-Mn合金微观组织和性能研究[D]. 冯艳.哈尔滨工程大学2019
  • 读者推荐
  • [1].对称型可控降解锌镁功能梯度生物材料的设计制备及其性能研究[D]. 张亚凯.太原理工大学2019
  • [2].生物医用低合金化Mg-Sn-Al-Zn合金的组织、拉伸性能和腐蚀行为研究[D]. 张尧.太原理工大学2019
  • [3].医用镁合金表面渗锌层的制备及其腐蚀行为与生物学性能研究[D]. 胡东杰.太原理工大学2019
  • [4].固溶处理与挤压变形对Mg-9Gd-xAl合金组织及力学性能影响[D]. 周鹏文.太原理工大学2019
  • [5].镁合金表面超疏水微纳米结构的构建及防腐蚀性能研究[D]. 靳晴.太原理工大学2019
  • [6].Al-Zn-Mg-Cu合金第二相结构的原子尺度球差矫正透射电子显微研究[D]. 许雪松.上海交通大学2017
  • [7].Mg-Sn系耐热镁合金组织及性能研究[D]. 付雪松.重庆大学2018
  • [8].等通道挤压准晶强化Mg-Sn基合金的组织、织构及力学行为研究[D]. 田亮.太原理工大学2017
  • [9].Mg-Sn合金组织与力学性能[D]. 刘彬.沈阳工业大学2012
  • [10].晶粒长大过程及其生长动力学的相场法研究[D]. 许泉.西北工业大学2007
  • 论文详细介绍

    论文作者分别是来自太原理工大学的郭晨,发表于刊物太原理工大学2019-07-26论文,是一篇关于基合金论文,热挤压论文,显微组织论文,织构论文,强化机制论文,太原理工大学2019-07-26论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自太原理工大学2019-07-26论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。

    标签:;  ;  ;  ;  ;  ;  

    郭晨:基于第二相调控Mg-Sn基合金组织和性能的研究论文
    下载Doc文档

    猜你喜欢