本文主要研究内容
作者赵立臣,杨战营,杨文力(2019)在《Solitons in nonlinear systems and eigen-states in quantum wells》一文中研究指出:We study the relations between solitons of nonlinear Schro¨dinger equation and eigen-states of linear Schro¨dinger equation with some quantum wells. Many different non-degenerated solitons are re-derived from the eigen-states in the quantum wells. We show that the vector solitons for the coupled system with attractive interactions correspond to the identical eigen-states with the ones of the coupled systems with repulsive interactions. Although their energy eigenvalues seem to be different, they can be reduced to identical ones in the same quantum wells. The non-degenerated solitons for multi-component systems can be used to construct much abundant degenerated solitons in more components coupled cases.Meanwhile, we demonstrate that soliton solutions in nonlinear systems can also be used to solve the eigen-problems of quantum wells. As an example, we present the eigenvalue and eigen-state in a complicated quantum well for which the Hamiltonian belongs to the non-Hermitian Hamiltonian having parity–time symmetry. We further present the ground state and the first exited state in an asymmetric quantum double-well from asymmetric solitons. Based on these results, we expect that many nonlinear physical systems can be used to observe the quantum states evolution of quantum wells, such as a water wave tank, nonlinear fiber, Bose–Einstein condensate, and even plasma, although some of them are classical physical systems. These relations provide another way to understand the stability of solitons in nonlinear Schro¨dinger equation described systems, in contrast to the balance between dispersion and nonlinearity.
Abstract
We study the relations between solitons of nonlinear Schro¨dinger equation and eigen-states of linear Schro¨dinger equation with some quantum wells. Many different non-degenerated solitons are re-derived from the eigen-states in the quantum wells. We show that the vector solitons for the coupled system with attractive interactions correspond to the identical eigen-states with the ones of the coupled systems with repulsive interactions. Although their energy eigenvalues seem to be different, they can be reduced to identical ones in the same quantum wells. The non-degenerated solitons for multi-component systems can be used to construct much abundant degenerated solitons in more components coupled cases.Meanwhile, we demonstrate that soliton solutions in nonlinear systems can also be used to solve the eigen-problems of quantum wells. As an example, we present the eigenvalue and eigen-state in a complicated quantum well for which the Hamiltonian belongs to the non-Hermitian Hamiltonian having parity–time symmetry. We further present the ground state and the first exited state in an asymmetric quantum double-well from asymmetric solitons. Based on these results, we expect that many nonlinear physical systems can be used to observe the quantum states evolution of quantum wells, such as a water wave tank, nonlinear fiber, Bose–Einstein condensate, and even plasma, although some of them are classical physical systems. These relations provide another way to understand the stability of solitons in nonlinear Schro¨dinger equation described systems, in contrast to the balance between dispersion and nonlinearity.
论文参考文献
论文详细介绍
论文作者分别是来自Chinese Physics B的赵立臣,杨战营,杨文力,发表于刊物Chinese Physics B2019年01期论文,是一篇关于,Chinese Physics B2019年01期论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自Chinese Physics B2019年01期论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。