导读:本文包含了本征语音论文开题报告文献综述及选题提纲参考文献,主要关键词:语音转换,语音,倒谱,短时谱
本征语音论文文献综述
李阳春,俞一彪[1](2015)在《倒谱本征空间结构化高斯混合模型语音转换方法》一文中研究指出针对非平行语料非联合训练条件下的语音转换,提出一种基于倒谱本征空间结构化高斯混合模型的方法。提取说话人语音倒谱特征参数之后,根据其散布矩阵计算本征向量构造倒谱本征空间并训练结构化高斯混合模型SGMM-ES(Structured Gaussian Mixture Model in Eigen Space)。源和目标说话人各自独立训练的SGMM-ES根据全局声学结构AUS(Acoustical Universal Structure)原理进行匹配对准,最终得到基于倒谱本征空间的短时谱转换函数。实验结果表明,转换语音的目标说话人平均识别率达到95.25%,平均谱失真度为1.25,相对基于原始倒谱特征空间的SGMM方法分别提高了0.8%和7.3%,而ABX和MOS测评表明转换性能非常接近于传统平行语料方法。这一结果说明采用倒谱本征空间结构化高斯混合模型进行非平行语料条件下的语音转换是有效的。(本文来源于《声学学报》期刊2015年01期)
李阳春[2](2014)在《倒谱本征空间结构化高斯混合模型及语音转换研究》一文中研究指出语音转换是语音信号处理领域的一个重要分支,其目的是保持说话人语音的语义信息不变,只改变说话人的个性特征,源说话人语音经过转换后其个性特征更接近目标说话人的个性特征。传统的语音转换方法大多采用平行语料联合训练源-目标说话人的语音模型并由此推导出相应的语音转换函数,但在实际应用中难以获得完全平行的语料,而且训练联合说话人语音模型的计算量大,在多说话人之间进行语音转换时系统繁杂。本课题针对非平行语料非联合训练条件下的语音转换,提出一种基于倒谱本征空间结构化高斯混合模型的方法。首先提取说话人语音的倒谱特征参数,然后根据其散布矩阵计算本征向量构造倒谱本征空间并训练结构化高斯混合模型(SGMM-ES,Structured Gaussian Mixture Model in Eigen Space)。源和目标说话人各自独立训练的SGMM-ES根据全局声学结构(AUS, Acoustical Universal Structure)原理进行匹配对准,最终得到基于倒谱本征空间的短时谱转换函数。主客观实验结果以及表明SGMM-ES语音转换系统的转换性能非常接近于传统平行语料的方法。这一结果说明采用倒谱本征空间结构化高斯混合模型进行非平行语料条件下的语音转换是有效的。本课题的研究内容主要包括以下几个方面:(1)、研究了语音产生的基本原理以及数学模型,对语音的个性特征参数进行了详细的分析,并基于STRAIGHT构成语音分析-合成平台。(2)、搭建了平行语料联合训练条件下基于GMM模型的语音转换平台作为基准系统,并具体分析了传统语音转换方法存在的问题。(3)、深入研究了语音的全局声学结构原理,提出了说话人倒谱本征空间结构化高斯混合模型(SGMM-ES)及其具体实现算法。(4)、在非平行语料非联合训练的条件下,实现了基于倒谱本征空间结构化高斯混合模型的语音转换系统。(5)、对GMM、SGMM、SGMM-ES叁种方法得到的转换语音进行了主客观实验评测,并作了详细的分析,以验证本论文提出方法的有效性。(本文来源于《苏州大学》期刊2014-05-01)
张文林,张连海,陈琦,李弼程[3](2014)在《语音识别中基于低秩约束的本征音子说话人自适应方法》一文中研究指出该文提出一种基于低秩约束的本征音子(Eigenphone)说话人自适应方法。原始的本征音子说话人自适应方法在自适应语料充分时具有很好的效果,然而当自适应语料不足时,出现严重的过拟合现象,导致自适应后的系统可能比自适应前的系统还要差。首先,对协方差矩阵为对角阵的隐马尔可夫-高斯混合模型语音识别系统,推导出一种简化的本征音子矩阵估计算法;然后,对本征音子矩阵引入低秩约束,采用矩阵的核范数作为矩阵秩的凸近似,通过调节核范数的权重因子以有效控制自适应模型的复杂度;最后,给出一种加速近点梯度算法以求解新算法中引入的带有核范数正则项的数学优化问题。汉语连续语音识别的说话人自适应实验表明,引入低秩约束后,本征音子说话人自适应方法的自适应效果得到了明显提高,在5~50 s的自适应数据条件下,均取得了比最大似然线性回归后接最大后验(MLLR+MAP)自适应更佳的识别效果。(本文来源于《电子与信息学报》期刊2014年04期)
本征语音论文开题报告
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
语音转换是语音信号处理领域的一个重要分支,其目的是保持说话人语音的语义信息不变,只改变说话人的个性特征,源说话人语音经过转换后其个性特征更接近目标说话人的个性特征。传统的语音转换方法大多采用平行语料联合训练源-目标说话人的语音模型并由此推导出相应的语音转换函数,但在实际应用中难以获得完全平行的语料,而且训练联合说话人语音模型的计算量大,在多说话人之间进行语音转换时系统繁杂。本课题针对非平行语料非联合训练条件下的语音转换,提出一种基于倒谱本征空间结构化高斯混合模型的方法。首先提取说话人语音的倒谱特征参数,然后根据其散布矩阵计算本征向量构造倒谱本征空间并训练结构化高斯混合模型(SGMM-ES,Structured Gaussian Mixture Model in Eigen Space)。源和目标说话人各自独立训练的SGMM-ES根据全局声学结构(AUS, Acoustical Universal Structure)原理进行匹配对准,最终得到基于倒谱本征空间的短时谱转换函数。主客观实验结果以及表明SGMM-ES语音转换系统的转换性能非常接近于传统平行语料的方法。这一结果说明采用倒谱本征空间结构化高斯混合模型进行非平行语料条件下的语音转换是有效的。本课题的研究内容主要包括以下几个方面:(1)、研究了语音产生的基本原理以及数学模型,对语音的个性特征参数进行了详细的分析,并基于STRAIGHT构成语音分析-合成平台。(2)、搭建了平行语料联合训练条件下基于GMM模型的语音转换平台作为基准系统,并具体分析了传统语音转换方法存在的问题。(3)、深入研究了语音的全局声学结构原理,提出了说话人倒谱本征空间结构化高斯混合模型(SGMM-ES)及其具体实现算法。(4)、在非平行语料非联合训练的条件下,实现了基于倒谱本征空间结构化高斯混合模型的语音转换系统。(5)、对GMM、SGMM、SGMM-ES叁种方法得到的转换语音进行了主客观实验评测,并作了详细的分析,以验证本论文提出方法的有效性。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
本征语音论文参考文献
[1].李阳春,俞一彪.倒谱本征空间结构化高斯混合模型语音转换方法[J].声学学报.2015
[2].李阳春.倒谱本征空间结构化高斯混合模型及语音转换研究[D].苏州大学.2014
[3].张文林,张连海,陈琦,李弼程.语音识别中基于低秩约束的本征音子说话人自适应方法[J].电子与信息学报.2014