本文主要研究内容
作者(2019)在《Structural, compositional and mineralogical characterization of carbonatitic copper sulfide: Run of mine, concentrate and tailings》一文中研究指出:The aim of this study was to determine the structural, compositional, and mineralogical composition of carbonatitic copper sulfide concentrator plant streams. Three samples, each from a different stream(run of mine(ROM), concentrate, and tailings) of a copper concentrator were characterized using various techniques, including stereomicroscopy, X-ray fluorescence, X-ray diffraction, Fourier transform infrared(FTIR) spectroscopy, scanning electron microscopy(SEM) in conjunction with energy-dispersive X-ray spectroscopy(EDS), and optical microscopy. The results reveal that each stream possesses its own unique compositional features. Carbonate minerals associated with calcite and dolomite, followed by quartz, remain the major minerals in both the ROM and tails streams. In the ROM stream, chalcopyrite appears to occur as veins within the carbonatite-hosting ore body. Mineral phase mutation was discovered in the tails stream because magnetite formerly identified in the ROM as the primary iron oxide had evolved into hematite. This metamorphosis was likely promoted by the concentration process. The concentration process was effective, upgrading the chalcopyrite content from 2 wt% in the ROM stream to 58 wt% in the concentrate stream; it was accompanied by bornite(4 wt%), anilite(3 wt%), and digenite(2.5 wt%). In addition, the concentrate stream exhibited properties distinctive from those of the other streams. The FTIR analysis showed the existence of a sulfide group related to the chalcopyrite mineral. Free chalcopyrite grains were observed in the concentrate by SEM analysis, and their mineral presence was supported by the EDS analysis results. All characterization techniques corresponded well with each other regarding the structure, chemistry, and composition of the samples.
Abstract
The aim of this study was to determine the structural, compositional, and mineralogical composition of carbonatitic copper sulfide concentrator plant streams. Three samples, each from a different stream(run of mine(ROM), concentrate, and tailings) of a copper concentrator were characterized using various techniques, including stereomicroscopy, X-ray fluorescence, X-ray diffraction, Fourier transform infrared(FTIR) spectroscopy, scanning electron microscopy(SEM) in conjunction with energy-dispersive X-ray spectroscopy(EDS), and optical microscopy. The results reveal that each stream possesses its own unique compositional features. Carbonate minerals associated with calcite and dolomite, followed by quartz, remain the major minerals in both the ROM and tails streams. In the ROM stream, chalcopyrite appears to occur as veins within the carbonatite-hosting ore body. Mineral phase mutation was discovered in the tails stream because magnetite formerly identified in the ROM as the primary iron oxide had evolved into hematite. This metamorphosis was likely promoted by the concentration process. The concentration process was effective, upgrading the chalcopyrite content from 2 wt% in the ROM stream to 58 wt% in the concentrate stream; it was accompanied by bornite(4 wt%), anilite(3 wt%), and digenite(2.5 wt%). In addition, the concentrate stream exhibited properties distinctive from those of the other streams. The FTIR analysis showed the existence of a sulfide group related to the chalcopyrite mineral. Free chalcopyrite grains were observed in the concentrate by SEM analysis, and their mineral presence was supported by the EDS analysis results. All characterization techniques corresponded well with each other regarding the structure, chemistry, and composition of the samples.
论文参考文献
论文详细介绍
论文作者分别是来自International Journal of Minerals Metallurgy and Materials的,发表于刊物International Journal of Minerals Metallurgy and Materials2019年02期论文,是一篇关于,International Journal of Minerals Metallurgy and Materials2019年02期论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自International Journal of Minerals Metallurgy and Materials2019年02期论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。
标签:International Journal of Minerals Metallurgy and Materials2019年02期论文;