高斯混合论文-印兴耀,贺东阳,宗兆云,李坤,肖张波

高斯混合论文-印兴耀,贺东阳,宗兆云,李坤,肖张波

导读:本文包含了高斯混合论文开题报告文献综述及选题提纲参考文献,主要关键词:高斯混合模型(GMM),离散变量,线性反演,连续变量

高斯混合论文文献综述

印兴耀,贺东阳,宗兆云,李坤,肖张波[1](2019)在《结合序贯指示模拟的贝叶斯高斯混合线性反演》一文中研究指出高斯混合模型(Gaussian Mixture Model, GMM)可以用来描述储层性质的多峰分布特性,多峰特性主要是由于它们在不同离散变量内的变化而引起的.在高斯混合模型中,高斯分量的权值代表离散变量的概率.然而,基于高斯混合模型的贝叶斯线性反演可能会对某些点的离散变量错误地分类,进而影响连续变量的反演结果,尤其存在强噪声的时候.在本文中,我们考虑了离散变量的空间变化性,并将高斯混合模型与序贯指示模拟(Sequential Indicator Simulation, SIS)相结合来确定离散变量的后验条件权值,形成了结合序贯指示模拟的贝叶斯高斯混合线性反演方法.该方法能够准确地对离散变量进行归类,且具有良好的抗噪性.通过模型试算,我们证明了这种方法的可行性,并在实际资料中取得了较好的结果.(本文来源于《地球物理学报》期刊2019年12期)

吕苗苗,孙建明[2](2019)在《基于改进高斯混合模型的运动图像目标检测算法》一文中研究指出运动图像目标检测指的是从序列图像中将变化的目标从背景中分离出来,高斯混合模型可以对视频序列图像的前景和背景进行分类,再利用背景减除实现运动目标的检测。提出一种基于改进高斯混合模型的优化背景建模方法,该方法首先利用3×3模板对序列图像帧中的像素进行类似卷积的均值计算,然后利用相邻均值的差提取均差因子自适应更新图像的均值。在此基础上,设计了自适应学习率和学习速率,利用改进高斯混合模型实现序列图像的背景建模。改进模型不仅能有效减少数据计算量,同时可以降低在相似区域像素计算的时长,大大加快背景建模速度。实验结果表明,改进模型在目标检测、算法执行速率等性能指标上都有更好的表现,能满足实时检测要求。(本文来源于《半导体光电》期刊2019年06期)

周逸飞,朱星,刘文德[3](2019)在《基于声发射和高斯混合模型的灰岩破裂特征识别研究》一文中研究指出通过单轴压缩条件下灰岩破裂过程的声发射试验研究,利用高斯混合模型(GMM)对加载过程声发射信号波形特征进行深入分析,探索性识别灰岩破裂失稳过程的裂纹模式及其前兆特征。分析结果表明,灰岩在单轴加载过程中先后主要存在张拉和剪切两种破裂模式。其中,张拉破裂的声发射信号波形特征在AF-RA坐标空间呈现低A_F值、高R_A值分布;剪切破裂的声发射信号波形特征在AF-RA坐标空间呈现低R_A值、高A_F值,且随着应力的增加分布中心向A_F轴靠拢。GMM分析结果揭示了灰岩在整个应力加载过程中以张拉裂纹为主,在加载前中期几乎全为张拉裂纹,临近破坏阶段过渡到剪切破坏为主。剪切裂纹所占比例的最大值出现在(0.8~0.9)σ_c阶段,也是AF-RA坐标轴分布呈现最大A_F值时。研究结果可为预测早期灰岩破裂失稳提供参考,同时为深入研究识别岩石破裂失稳前兆信号特征提供了一种分析方法。(本文来源于《水利水电技术》期刊2019年11期)

欧阳城添,汤懿[4](2019)在《基于高斯混合模型的核相关滤波目标跟踪算法》一文中研究指出针对目标跟踪中的尺度变化、旋转、遮挡等问题,提出基于高斯混合模型的核相关滤波目标跟踪算法。利用卷积神经网络提取卷积特征并建立目标外观的高斯混合模型,利用核相关滤波算法检测目标位置,使用多尺度、多形状跟踪方法精确定位目标,在线更新高斯混合模型和核相关滤波器。在公开数据集上进行定量和定性分析,并与多种跟踪算法比较,该算法的距离精度和重迭精度相比核相关滤波算法,分别提高了19%、54%。实验结果表明,采用高斯混合模型和多尺度、多形状跟踪方法,较好解决了外观和尺度变化问题,相比其它算法具有更好的鲁棒性和适应性。(本文来源于《计算机工程与设计》期刊2019年11期)

张楠[5](2019)在《基于改进高斯混合滤波的矿井加权质心定位算法》一文中研究指出针对煤矿井下复杂环境中无线信号的非视距传播导致RSSI定位算法存在测距误差大及定位结果不准确的问题,提出了一种基于改进高斯混合滤波的矿井加权质心定位算法。首先根据最大期望算法对未知节点的相应RSSI测量数据进行聚类,将它们划分为多个高斯概率密度函数模型;然后根据数据特征,利用赤池信息量准则对采样数据进行优化,得到精确的测量值;最后计算未知节点的初始坐标,将未知节点初始坐标和真实坐标间的误差值作为权值因子,结合质心定位算法计算得到未知节点的最终坐标,实现目标定位。仿真与实验结果表明,该定位算法可实现煤矿井下人员的高精度定位,平均定位误差为1.83m。(本文来源于《工矿自动化》期刊2019年11期)

陆华才,贺华展,黄宜庆,高文根[6](2019)在《改进Canny边缘算子和高斯混合模型的运动目标检测》一文中研究指出在对视频中运动目标的检测,高斯混合模型能够达到较好的效果,但是容易受到光照突变和环境噪声的影响,并且运动目标完整的轮廓难以提取,在对Canny边缘检测算法进行改进,用中值滤波器和双边滤波器构成的混合滤波器代替边缘检测算法中固有滤波器,并且使用Otsu算法取代人工设置双阈值,避免丢失真实边缘,保证边缘信息的完整性,并且用隔帧处理的四帧差分法的到差分图像,获得运动目标区域,再利用高斯混合模型提取前景图像,结合两种算法的前景图像能够获得较完整的运动目标轮廓。根据实验结果分析,和传统的高斯混合模型相比,该算法能够避免一定的光照突变的影响,解决了目标图像出现空洞及漏检造成边缘信息丢失的问题,具有更强的鲁棒性。(本文来源于《电子测量与仪器学报》期刊2019年10期)

王坚[7](2019)在《基于高斯混合建模的扶梯扶手边界区域越界检测方法》一文中研究指出本文针对扶梯扶手边界区域越界检测提出了基于高斯混合建模的方法。该方法只对ROI(感兴趣区域)进行处理,主要通过输入的ROI四边形的四个顶点,根据本文提出的一种针对四边形的快速扫描线填充方法获取ROI四边形区域模板,然后,对ROI矩形区域图像用混合高斯模型检测运动前景,再计算ROI四边形模板内的运动前景面积占比,以及面积占比大于某一设定阈值的持续时间。最后,根据持续时间是否大于某一设定阈值来判断是否存在越界。实验证明该方法可以准确检测出扶梯扶手边界区域越界的人或物品。(本文来源于《中国设备工程》期刊2019年18期)

汪韧,郭静波,惠俊鹏,王泽,刘红军[8](2019)在《基于卷积高斯混合模型的统计压缩感知》一文中研究指出高斯混合模型被广泛应用于统计压缩感知中信号先验概率分布的建模.利用高斯混合模型对图像的概率分布进行建模时,通常需要先对图像分块,再对图像块的概率分布进行建模.本文提出卷积高斯混合模型对整幅图像的概率分布进行建模.通过期望极大化算法求解极大边缘似然估计,实现模型中未知参数的估计.此外,考虑到在整幅图像上计算的复杂度较高,本文在卷积高斯混合模型和压缩测量模型中引入循环卷积,所有的训练和恢复过程都可以利用二维快速傅里叶变换实现快速运算.仿真实验表明,本文所提的MMLEconvGMM算法的恢复性能要优于传统的压缩感知算法的恢复性能.(本文来源于《物理学报》期刊2019年18期)

张宝一,陆浩,杨莉,李雪峰,黄岸烁[9](2019)在《顾及梯度的高斯混合模型在叁维属性场空间聚类中的应用》一文中研究指出针对高斯混合模型(GMM)在空间聚类中由于忽视目标对象之间的空间关联性而导致的高误判率等问题,本文提出了一种顾及梯度的高斯混合模型:GMM-G,并将其应用在叁维属性场的空间聚类中。GMM-G用反映标量场最大属性变化方向的梯度因子来定义邻域规则,设定梯度正交平面所通过的邻域体元更倾向于与中心体元归属于相同或相近的类别;并据此设计了符合归一性和空间连续性的空间邻域信息函数,来定义中心体元属于各类别的具有空间领域规则约束的后验概率。通过对由蒙特卡洛随机抽样构建的实验场的空间聚类结果进行对比表明,相对GMM方法,GMM-G具有更优的聚类精度及效率。最后,把GMM-G方法用于红透山铜矿区可控源音频大地电磁法(CSAMT)叁维视电阻率场的空间聚类,得到了与已知岩性划分具有较高匹配度的分类结果,该方法可为物性属性场的岩性划分及地质推断提供相关的依据和参考。(本文来源于《地质找矿论丛》期刊2019年03期)

熊伟,顾祥岐,徐从安,吕亚飞[10](2019)在《基于高斯混合EM聚类的多编队航迹起始方法》一文中研究指出针对现有航迹起始方法难以对编队目标进行有效航迹起始的问题,在Hough变换法及其衍生算法基础上,提出基于Hough变换和高斯混合最大期望(expactation maximazation,EM)聚类的多编队目标航迹起始方法。该方法首先利用量测数据的时序信息和目标的运动参数进行筛选,剔除大量虚假量测;再对筛选后的量测数据进行Hough变换,得到初步航迹信息;然后利用相异度矩阵对所得航迹进行预聚类,完成聚类中心初始化;最后进行高斯混合EM聚类,得到聚类结果。仿真结果表明,与Hough变换法及其衍生算法相比,该方法能够快速有效地起始编队目标的航迹,解决了目标密集带来的航迹起始混乱问题。(本文来源于《系统工程与电子技术》期刊2019年11期)

高斯混合论文开题报告

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

运动图像目标检测指的是从序列图像中将变化的目标从背景中分离出来,高斯混合模型可以对视频序列图像的前景和背景进行分类,再利用背景减除实现运动目标的检测。提出一种基于改进高斯混合模型的优化背景建模方法,该方法首先利用3×3模板对序列图像帧中的像素进行类似卷积的均值计算,然后利用相邻均值的差提取均差因子自适应更新图像的均值。在此基础上,设计了自适应学习率和学习速率,利用改进高斯混合模型实现序列图像的背景建模。改进模型不仅能有效减少数据计算量,同时可以降低在相似区域像素计算的时长,大大加快背景建模速度。实验结果表明,改进模型在目标检测、算法执行速率等性能指标上都有更好的表现,能满足实时检测要求。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

高斯混合论文参考文献

[1].印兴耀,贺东阳,宗兆云,李坤,肖张波.结合序贯指示模拟的贝叶斯高斯混合线性反演[J].地球物理学报.2019

[2].吕苗苗,孙建明.基于改进高斯混合模型的运动图像目标检测算法[J].半导体光电.2019

[3].周逸飞,朱星,刘文德.基于声发射和高斯混合模型的灰岩破裂特征识别研究[J].水利水电技术.2019

[4].欧阳城添,汤懿.基于高斯混合模型的核相关滤波目标跟踪算法[J].计算机工程与设计.2019

[5].张楠.基于改进高斯混合滤波的矿井加权质心定位算法[J].工矿自动化.2019

[6].陆华才,贺华展,黄宜庆,高文根.改进Canny边缘算子和高斯混合模型的运动目标检测[J].电子测量与仪器学报.2019

[7].王坚.基于高斯混合建模的扶梯扶手边界区域越界检测方法[J].中国设备工程.2019

[8].汪韧,郭静波,惠俊鹏,王泽,刘红军.基于卷积高斯混合模型的统计压缩感知[J].物理学报.2019

[9].张宝一,陆浩,杨莉,李雪峰,黄岸烁.顾及梯度的高斯混合模型在叁维属性场空间聚类中的应用[J].地质找矿论丛.2019

[10].熊伟,顾祥岐,徐从安,吕亚飞.基于高斯混合EM聚类的多编队航迹起始方法[J].系统工程与电子技术.2019

标签:;  ;  ;  ;  

高斯混合论文-印兴耀,贺东阳,宗兆云,李坤,肖张波
下载Doc文档

猜你喜欢