:钙钛矿与层状钙钛矿结构微波介质陶瓷论文

:钙钛矿与层状钙钛矿结构微波介质陶瓷论文

本文主要研究内容

作者(2019)在《钙钛矿与层状钙钛矿结构微波介质陶瓷》一文中研究指出:作为谐振器、滤波器、天线、波导等微波元件的关键材料,微波介质陶瓷在移动通讯、卫星通讯等微波通讯领域有着十分重要的应用。特别是5G移动通信技术的迅速发展,对具有超高Q值和近零谐振频率温度系数的中介电常数微波介质陶瓷提出了迫切的需求。本学位论文工作,系统研究了具有R-P结构的(Sr1-xCax)2Ti04和 Sr2[Ti1_x(A10.5Nb0.5)x]O4陶瓷以及具有钙钛矿结构的CaTi1-x(Al0.5Nb0.5)x03陶瓷的结构和微波介电性能,获得如下结论:(1)使用标准固相反应法合成了(Sr1-xCax)2TiO4(0≤x≤0.15)陶瓷。在x=0~0.15组分范围内获得了空间群I4/mmm的四方Ruddlesden-Popper(R-P)(Sr1-xCax)2TiO4固溶体,只在x≥0.10时检测到少量Sr3Ti207第二相。在该陶瓷中,介电常数εr和谐振频率温度系数τ∫随着x增加均先降低后增加,而品质因子Qf初始时轻微下降而在x≥0.10快速下降。在x=0.075时获得微波介电性能的最佳组合:εr=39.3,Qf=93,550 GHz,τf=119ppm/℃。其中,在Sr2Ti04陶瓷中用Ca2+取代Sr2+导致B位价键增强,谐振频率温度系数获得了显著提高(从140 ppm/℃ to 119 ppm/℃。(2)使用标准固相反应法合成了Sr2[Ti1-x(Al0.5Nb0.5)x]O4(x=0,0.10,0.25,0.30,0.5)陶瓷。在所研究的整个成分范围获得了空间群为I4/mmm的四方R-P结构Sr2[Ti1-x(Al0.5Nb0.5)x]O4固溶体,当x≥0.25时存在少量的第二相Sr3Ti207(1-2wt%)。随着x增加,由于其共价键增强,Sr2[Ti1-x(Al00.5Nb0.5)x]O4陶瓷的谐振频率温度系数τ∫从132 ppm/℃改善为14pmm/℃。同时,获得了高而稳定的Qf值(尽管开始时稍有下降),Qf值的变化趋势取决于填充率和微观结构。随着x增加,介电常数εr.则线性下降。在x=0.50时获得了最佳微波介电性能组合:εr.=25.1,Qf=77,580 GHz,τf=14 ppm/℃。这类陶瓷有望成为不含Ta等贵金属元素的超高Q值的微波介质陶瓷的候选材料。(3)使用标准固相反应法合成了CaTi1-x(Al0.5Nb0.5)xO3(x=0,0.025 0.10,0.15,0.30,0.45)陶瓷。在所研究的整个组分范围内成功获得空间群为Pbnm的正交结构CaTi1 x(Al0.5Nb0.5)xO3固溶体。谐振频率温度系数τf和介电常数εr随着x增加近乎线性下降,而Qf值随着x值增加持续增大。其中介电常数降低至55.1,而τf从750 ppm/℃(x=0)被调控至近零(5 ppm/℃)。Qf则从1 1,500 GHz显著提高到49,700 GHz。在x=0.45时获得优异的微波介电性能组合:εr.=55.1,Qf=49,700 GHz,τf=5ppm/℃。该陶瓷具有在无线通讯系统中的实用潜力。

Abstract

zuo wei xie zhen qi 、lv bo qi 、tian xian 、bo dao deng wei bo yuan jian de guan jian cai liao ,wei bo jie zhi tao ci zai yi dong tong xun 、wei xing tong xun deng wei bo tong xun ling yu you zhao shi fen chong yao de ying yong 。te bie shi 5Gyi dong tong xin ji shu de xun su fa zhan ,dui ju you chao gao Qzhi he jin ling xie zhen pin lv wen du ji shu de zhong jie dian chang shu wei bo jie zhi tao ci di chu le pai qie de xu qiu 。ben xue wei lun wen gong zuo ,ji tong yan jiu le ju you R-Pjie gou de (Sr1-xCax)2Ti04he Sr2[Ti1_x(A10.5Nb0.5)x]O4tao ci yi ji ju you gai tai kuang jie gou de CaTi1-x(Al0.5Nb0.5)x03tao ci de jie gou he wei bo jie dian xing neng ,huo de ru xia jie lun :(1)shi yong biao zhun gu xiang fan ying fa ge cheng le (Sr1-xCax)2TiO4(0≤x≤0.15)tao ci 。zai x=0~0.15zu fen fan wei nei huo de le kong jian qun I4/mmmde si fang Ruddlesden-Popper(R-P)(Sr1-xCax)2TiO4gu rong ti ,zhi zai x≥0.10shi jian ce dao shao liang Sr3Ti207di er xiang 。zai gai tao ci zhong ,jie dian chang shu εrhe xie zhen pin lv wen du ji shu τ∫sui zhao xzeng jia jun xian jiang di hou zeng jia ,er pin zhi yin zi Qfchu shi shi qing wei xia jiang er zai x≥0.10kuai su xia jiang 。zai x=0.075shi huo de wei bo jie dian xing neng de zui jia zu ge :εr=39.3,Qf=93,550 GHz,τf=119ppm/℃。ji zhong ,zai Sr2Ti04tao ci zhong yong Ca2+qu dai Sr2+dao zhi Bwei jia jian zeng jiang ,xie zhen pin lv wen du ji shu huo de le xian zhe di gao (cong 140 ppm/℃ to 119 ppm/℃。(2)shi yong biao zhun gu xiang fan ying fa ge cheng le Sr2[Ti1-x(Al0.5Nb0.5)x]O4(x=0,0.10,0.25,0.30,0.5)tao ci 。zai suo yan jiu de zheng ge cheng fen fan wei huo de le kong jian qun wei I4/mmmde si fang R-Pjie gou Sr2[Ti1-x(Al0.5Nb0.5)x]O4gu rong ti ,dang x≥0.25shi cun zai shao liang de di er xiang Sr3Ti207(1-2wt%)。sui zhao xzeng jia ,you yu ji gong jia jian zeng jiang ,Sr2[Ti1-x(Al00.5Nb0.5)x]O4tao ci de xie zhen pin lv wen du ji shu τ∫cong 132 ppm/℃gai shan wei 14pmm/℃。tong shi ,huo de le gao er wen ding de Qfzhi (jin guan kai shi shi shao you xia jiang ),Qfzhi de bian hua qu shi qu jue yu tian chong lv he wei guan jie gou 。sui zhao xzeng jia ,jie dian chang shu εr.ze xian xing xia jiang 。zai x=0.50shi huo de le zui jia wei bo jie dian xing neng zu ge :εr.=25.1,Qf=77,580 GHz,τf=14 ppm/℃。zhe lei tao ci you wang cheng wei bu han Tadeng gui jin shu yuan su de chao gao Qzhi de wei bo jie zhi tao ci de hou shua cai liao 。(3)shi yong biao zhun gu xiang fan ying fa ge cheng le CaTi1-x(Al0.5Nb0.5)xO3(x=0,0.025 0.10,0.15,0.30,0.45)tao ci 。zai suo yan jiu de zheng ge zu fen fan wei nei cheng gong huo de kong jian qun wei Pbnmde zheng jiao jie gou CaTi1 x(Al0.5Nb0.5)xO3gu rong ti 。xie zhen pin lv wen du ji shu τfhe jie dian chang shu εrsui zhao xzeng jia jin hu xian xing xia jiang ,er Qfzhi sui zhao xzhi zeng jia chi xu zeng da 。ji zhong jie dian chang shu jiang di zhi 55.1,er τfcong 750 ppm/℃(x=0)bei diao kong zhi jin ling (5 ppm/℃)。Qfze cong 1 1,500 GHzxian zhe di gao dao 49,700 GHz。zai x=0.45shi huo de you yi de wei bo jie dian xing neng zu ge :εr.=55.1,Qf=49,700 GHz,τf=5ppm/℃。gai tao ci ju you zai mo xian tong xun ji tong zhong de shi yong qian li 。

论文参考文献

  • [1].BaO-Ln2O3-TiO2基微波介质陶瓷结构与介电性能的调控[D]. 王旭.南京航空航天大学2017
  • [2].低温烧结低介电常数微波介质陶瓷研究[D]. 姚国光.陕西师范大学2013
  • [3].改性CaTiO3基微波介质陶瓷结构与介电性能的研究[D]. 王浩.武汉理工大学2004
  • [4].低损耗微波介质陶瓷Ba(Mg1/3Nb2/3)O3的改性研究[D]. 田中青.武汉理工大学2004
  • [5].水热合成Ba-Ti基微波介质陶瓷的研究[D]. 徐建梅.华中科技大学2004
  • [6].聚合物前驱体法合成CaTiO3基微波介质陶瓷的研究[D]. 黄国华.华中科技大学2004
  • [7].铅基钙钛矿高介电常数微波介质陶瓷的改性研究[D]. 胡明哲.华中科技大学2004
  • [8].Ba6-3xLn8+2xTi18O54基微波介质陶瓷的改性及若干基础问题[D]. 秦霓.浙江大学2006
  • [9].中介电常数低温共烧微波介质陶瓷及其器件研究[D]. 童建喜.浙江大学2006
  • [10].新型ZnO-SiO2低介高频微波介质陶瓷研究[D]. 邹佳丽.浙江大学2007
  • 读者推荐
  • [1].新型铌酸盐微波介质陶瓷的制备与改性研究[D]. 杨浛.电子科技大学2019
  • [2].低介低损耗LTCC微波介质材料及应用研究[D]. 赖元明.电子科技大学2019
  • [3].BaO-Ln2O3-TiO2基微波介质陶瓷结构与介电性能的调控[D]. 王旭.南京航空航天大学2017
  • [4].Ca0.66Ti0.66R0.34Al0.34O3(R=La,Nd,Sm)基微波介质陶瓷的结构与介电性能调控[D]. 徐越.南京航空航天大学2017
  • [5].低温烧结Li2MO3、Li2Mg3MO6陶瓷及其微波介电性能研究[D]. 付志粉.陕西师范大学2017
  • [6].两种Nd-Ti基中高介微波陶瓷制备及性能机理研究[D]. 陈鹤拓.电子科技大学2018
  • [7].新型铌钽酸盐系中介微波介质陶瓷研究[D]. 吕笑松.天津大学2017
  • [8].B2O3-La2O3-MgO-TiO2微晶玻璃基低温共烧陶瓷研究[D]. 任海深.中国科学院大学(中国科学院上海硅酸盐研究所)2018
  • [9].复合钙钛矿微波介质陶瓷的微结构与性能调控[D]. 马翩翩.浙江大学2016
  • [10].钙钛矿结构微波陶瓷介电机理的研究[D]. 黄静.华中科技大学2004
  • 论文详细介绍

    论文作者分别是来自浙江大学的,发表于刊物浙江大学2019-07-04论文,是一篇关于钙钛矿结构论文,结构论文,微波介电陶瓷论文,键特性论文,介电性能论文,浙江大学2019-07-04论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自浙江大学2019-07-04论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。

    标签:;  ;  ;  ;  ;  ;  

    :钙钛矿与层状钙钛矿结构微波介质陶瓷论文
    下载Doc文档

    猜你喜欢