南宁市三建建筑安装工程有限责任公司
摘要:化学工程是将化学过程和物理过程的基础理论研究与工业化学相结合的学科,不仅是一门具有百年历史的成熟基础学科,也是充满朝气、与时俱进的学科。
关键词:化学工程;发展;展望;挑战
一、化学工程的发展
1、20世纪前叶,化学工程二级学科应运而生
在20世纪前叶,化学工程学科的发展促进了许多化学工艺的问世,如美国用丙烯合成出异丙醇,被誉为是石油化工的开端。这些化学工艺的出现,许多化学工程二级学科应运而生。
化学热力学,化学反应工程,传递过程,化工系统工程,化工控制工程等多个二级学科相继诞生。
2、20世纪50~60年代,化学工程完成了从单元操作到
三传一反
传递过程中动量传递的理论基础是流体力学,热量传递的理论基础是传热学,质量传递的理论基础是传质学,20世纪50~60年代,科学家将数学和物理的方法引入传递过程的研究,使传递过程学科有了较大的发展。1957年在第一届化学反应工程会议上确定了化学反应学科的研究内容和范围,从而确定化学反应工程学科的概念。化学工程完成了从单元操作到三传一反的过渡。
20世纪60年代以后,化学工程的各个主要部分,石油化工,煤化工,有机合成,工业催化等蓬勃发展,化学工程作为化学工艺和化学工业的理论指导,化学工艺对化学工程的过程体现,化学工业对化学工程的广泛应用,三者相互促进,化学工程达到一个新的高度。
3、20世纪末至今,化学工程与新技术学科和计算相结合
20世纪末至今,化学工程学科的发展趋势一是化学工程与新技术学科交叉渗透,形成一些新的边缘学科,二是与计算机技术的结合,促进化学工程在各领域的发展。
3.1化学工程与新技术学科交叉渗透
化学工程与生物化学、微生物学的结合形成生物工程科学,其中,发展迅速的是发酵工程、基因工程及细胞工程。如果说抗生素的诞生是生物学的发展,那么抗生素的大量生生产则是化学工程的功劳,化学工程解决了生物学过去用常规方法不能生产或者生产成本特别昂贵的药品的生产技术问题,使胰岛素、干扰素等工业化生产。
化学工程与电子学的结合,形成微电子化学工程,如被誉为第四代照明光源的,现在广泛应用的LED灯,白光LED的实现是用光敷转化法,LED芯片发光激发荧光粉,芯片与荧光粉发出的光混合形成白光,其中荧光粉的生产是重点。现有的荧光粉都是通过化学方法制备的,有磷酸盐、硅酸盐体系荧光粉。现在充足的LED灯市场是化学工业制备荧光粉方法的不断增加的结果,所以说微电子工业的发展离不开化学工程的进步。
3.2化学工程与计算机技术结合
随着计算机技术的迅猛发展,化学工程的研究中又增加了计算机模拟的方法,它已经逐渐成为化学工程中最富有生命力的研究方法。出现了计算机化工模拟,其中最重要的模拟是流程模拟。流程模拟就是在计算机上进行实际生产过程的模拟,由于这一过程并不涉及到实际装置的任何管线和设备的布置,物料衡算,能量衡算等这一切由程序完成。流程模拟还可以由计算机完成经济评价,环境评估和方案优化对比,现在较成熟的流程模拟软件有AspenPlus系统和PROII系统。
计算机还在单元模拟,分子模拟,化工图样设计,化工计算等方面有重要的应用。分子模拟深入到操作内部的传质过程和反应过程,可以到纳米级模拟。计算机在化工计算中的应用,提高了工业的效率,最大的转变是化学技术以从前的先实验再计算,发展到如今的先计算模拟再实验。这些计算机技术的广泛应用大大促进了化学工程学科的进步。
二、化学工程的未来展望
在未来,化学工程学科将保持它不断发展的脚步,焕发新的活力,一方面将推进化学工业的技术改革,另一方面将继续与新技术学科的前沿结合,以推动科学进步和环境的改善。
化学工业中新方法新技术的开发和改革都离不开化学工程的理论指导,如许多复杂工艺耗时长,能耗大,不经济,未来将许多工艺逐步向串联一步反应改进,变成简单工艺方便实现,这些自然离不开单元操作,三传一反,过程控制等化学工程的理论。
正如100年前从化学中分裂出了化学工程一样,今天在化学工程中又将分化出新的学科。化学工程为生命科学的发展奠定了基础,在未来将出现生命化学工程等学科。化学工业的研究对象从无生命到有生物活力。如人的身体实质上相当于一座构造复杂的小型化工厂,许多生理过程可以通过化学工程的原理进行解释,肠胃消化吸收可用传质原理解释,近来轰动国际科学界的转基因动物及细胞工程的一些问题中有待化学工程学科提供理论指导,如外源基因导人生命体内的原理与技术,哺乳动物作为生物反应器的新技术等。
化学工业在促进人类文明进步的同时,也产生了工业污染和排放,消耗了大量能源与资源。正因为如此,化学工程学科还将在未来环境保护和改善中发挥了不可替代的作用。用清洁能源代替现在的不可再生能源,开发新能源,用化学法处理工业废气,用无毒溶剂代替现在使用的有毒溶剂。
三、化学工程面临的挑战
80年代以来,高技术发展十分迅速,高技术产品生产依靠最新的科学技术。与传统化工产品相比,高技术化工产品生产有以下特征:产品靠质量及特性竞争,而不是靠价格及用途销售;生产工艺趋向小型化,而不是向大型化发展;生产装置常要求有变换产品的灵活性,而不是只生产单一产品;生产高性能专用材料,而不是常生产日用材料;使用复杂数学模型描述生产过程,而不是用简单数学模型模拟。由于化工高技术的发展,智力的竞争,经济的推动,促使化学工程面临新的挑战,需要解决新的化工科学技术问题。这些问题主要有:
1.在生物技术领域,把细胞看作是微型化学装置,细胞内反应受化学热力学、反应动力学及扩散的控制,需要测定酶、蛋白质及细胞系统的物化数据,开发细胞内部反应数学模型;研究生物表面及界面现象,例如抗体抗原内部反应、细胞蛋白合成、神经脉冲传达、离子选择性传递等;发展高效生物加工技术,如新型生物反应器、生物传感器及控制系统、生物产品的高纯分离及净化等。
2.在新材料领域,应用表面科学技术,研究高聚物、陶瓷材料、复合材料等微结构材料的分子结构与性质之间的关系;研究原料选用及材料加工与所生成的微结构之间的关系;研究材料表面及界面上的物理化学现象;用化学法而不用机械法制造部分复杂的材料系统。
3.在新能源领域,研究先进的煤转化为气体及液体的技术,掌握由合成气(CO与氢)直接制取基础有机化学品如乙二醇、醋酸、烯烃等的新技术;开发石油炼制新原料,更好地利用页岩油、重质原油及高硫高氮原油;研究核能、氢能、太阳能、地热能、生物能及城市废物能源;研究各种高效的节能新技术。
4.在计算技术方面,研究计算机处理复杂数学问题及求解详细模型的方法,从分子规模到装置规模去模拟过程物理及过程化学,建立过程现象的数学模型,更多地依靠计算理论预测而较少依靠经验来设计、控制及优化工艺过程及设备。对化工微型装置、单元操作及生产装里进行可靠模拟,提高工程放大能力,只经过少数模拟放大步骤,就能绕过中间试验直接进行生产装置设计,省去建造中试装置及进行试验的时间及费用。
5.在环保技术方面,将环境比作一个巨大的反应器,模拟各种人工及自然环境过程,建立带复杂化学现象及物理现象的数学模型;研究包括传递现象及化学反应的地下水分布状态;研究消除废物污染方法的过程特征,包括热分解法、生物法及催化法等。
四、结束语
化学工程科学的发展,迫使人们改变化工过程开发中的传统和偏见,要求迅速改变过程开发的策略。各门学科的相互渗透,促进了化学.工程的进一步发展。可以预料,“化工系统工程”、“生物、医学化学工程”和“化工可靠性工程”将会有很大的发展。