成健:1550 nm真空压缩态的制备及低频位相信号的量子增强测量论文

成健:1550 nm真空压缩态的制备及低频位相信号的量子增强测量论文

本文主要研究内容

作者成健(2019)在《1550 nm真空压缩态的制备及低频位相信号的量子增强测量》一文中研究指出:在光学测量过程中,待测量的测量精度受到真空起伏引起的量子噪声的限制,存在一个标准量子极限,这是利用经典光源进行精密测量所能达到的最大测量精度。这一特点反映在使用干涉仪测量微小物理量变化时,其灵敏度受到量子噪声的限制。连续变量压缩态光场由于其正交分量噪声起伏可低于散粒噪声基准的特性能够用于实现突破标准量子极限的量子精密测量。在实际的测量中,被测量例如位移的变化、拉力的传感等大多都集中在低频(kHz以下)范围,因此要实现这些物理量的量子精密测量就必须制备低频段稳定输出的压缩态光场,实现突破标准量子极限的低频段量子精密测量。激光干涉仪可用于测量折射率、旋转或表面位移(例如机械振动)的微小变化。它们将两束光之间的相位差的变化转换成输出端干涉条纹可见度的变化,通过光电探测器来检测。将低频压缩光注入激光干涉仪的真空通道,可以实现量子增强低频信号测量。本论文在实验制备低频段光通信波段真空压缩态光场的基础上,将其注入到光纤马赫-曾德尔干涉仪的真空通道,进行突破标准量子极限的位相信号测量。论文的主要研究内容如下:1、利用简并的光学参量振荡器(Degenerate optical parametric oscillator,DOPO)在实验上产生光通信波段连续变量1550 nm低频真空压缩态光场,DOPO为基于I类相位匹配的周期极化磷酸氧钛钾(PPKTP)晶体和凹面镜组成的半整块结构腔型。利用两个声光调制器(AOM)产生25 MHz移频调制相干光注入DOPO,通过相干控制技术锁定真空压缩态光场的压缩角实验制备出正交位相真空压缩光。在分析频率10-500 kHz频段,测量真空压缩态光场的噪声功率谱,压缩度为3 dB。2、将DOPO输出的1550 nm光通信波段正交位相真空压缩态光场注入光纤马赫-曾德尔干涉仪(Fiber Mach-zehnder Interferometer,FMZI),填补干涉仪的暗通道,实现量子增强型FMZI。将FMZI两臂的相对位相锁定在π/2,在干涉仪的一臂加载500kHz的相位调制信号。当注入真空压缩态光场时,观测到量子增强型FMZI实现了突破标准量子极限的低频位相信号测量,较常规干涉仪的信噪比提高了2 dB。

Abstract

zai guang xue ce liang guo cheng zhong ,dai ce liang de ce liang jing du shou dao zhen kong qi fu yin qi de liang zi zao sheng de xian zhi ,cun zai yi ge biao zhun liang zi ji xian ,zhe shi li yong jing dian guang yuan jin hang jing mi ce liang suo neng da dao de zui da ce liang jing du 。zhe yi te dian fan ying zai shi yong gan she yi ce liang wei xiao wu li liang bian hua shi ,ji ling min du shou dao liang zi zao sheng de xian zhi 。lian xu bian liang ya su tai guang chang you yu ji zheng jiao fen liang zao sheng qi fu ke di yu san li zao sheng ji zhun de te xing neng gou yong yu shi xian tu po biao zhun liang zi ji xian de liang zi jing mi ce liang 。zai shi ji de ce liang zhong ,bei ce liang li ru wei yi de bian hua 、la li de chuan gan deng da duo dou ji zhong zai di pin (kHzyi xia )fan wei ,yin ci yao shi xian zhe xie wu li liang de liang zi jing mi ce liang jiu bi xu zhi bei di pin duan wen ding shu chu de ya su tai guang chang ,shi xian tu po biao zhun liang zi ji xian de di pin duan liang zi jing mi ce liang 。ji guang gan she yi ke yong yu ce liang she she lv 、xuan zhuai huo biao mian wei yi (li ru ji xie zhen dong )de wei xiao bian hua 。ta men jiang liang shu guang zhi jian de xiang wei cha de bian hua zhuai huan cheng shu chu duan gan she tiao wen ke jian du de bian hua ,tong guo guang dian tan ce qi lai jian ce 。jiang di pin ya su guang zhu ru ji guang gan she yi de zhen kong tong dao ,ke yi shi xian liang zi zeng jiang di pin xin hao ce liang 。ben lun wen zai shi yan zhi bei di pin duan guang tong xin bo duan zhen kong ya su tai guang chang de ji chu shang ,jiang ji zhu ru dao guang qian ma he -ceng de er gan she yi de zhen kong tong dao ,jin hang tu po biao zhun liang zi ji xian de wei xiang xin hao ce liang 。lun wen de zhu yao yan jiu nei rong ru xia :1、li yong jian bing de guang xue can liang zhen dang qi (Degenerate optical parametric oscillator,DOPO)zai shi yan shang chan sheng guang tong xin bo duan lian xu bian liang 1550 nmdi pin zhen kong ya su tai guang chang ,DOPOwei ji yu Ilei xiang wei pi pei de zhou ji ji hua lin suan yang tai jia (PPKTP)jing ti he ao mian jing zu cheng de ban zheng kuai jie gou qiang xing 。li yong liang ge sheng guang diao zhi qi (AOM)chan sheng 25 MHzyi pin diao zhi xiang gan guang zhu ru DOPO,tong guo xiang gan kong zhi ji shu suo ding zhen kong ya su tai guang chang de ya su jiao shi yan zhi bei chu zheng jiao wei xiang zhen kong ya su guang 。zai fen xi pin lv 10-500 kHzpin duan ,ce liang zhen kong ya su tai guang chang de zao sheng gong lv pu ,ya su du wei 3 dB。2、jiang DOPOshu chu de 1550 nmguang tong xin bo duan zheng jiao wei xiang zhen kong ya su tai guang chang zhu ru guang qian ma he -ceng de er gan she yi (Fiber Mach-zehnder Interferometer,FMZI),tian bu gan she yi de an tong dao ,shi xian liang zi zeng jiang xing FMZI。jiang FMZIliang bei de xiang dui wei xiang suo ding zai π/2,zai gan she yi de yi bei jia zai 500kHzde xiang wei diao zhi xin hao 。dang zhu ru zhen kong ya su tai guang chang shi ,guan ce dao liang zi zeng jiang xing FMZIshi xian le tu po biao zhun liang zi ji xian de di pin wei xiang xin hao ce liang ,jiao chang gui gan she yi de xin zao bi di gao le 2 dB。

论文参考文献

  • [1].在光学腔中自旋压缩态产生的研究[D]. 刘刚.温州大学2019
  • [2].压缩态的制备及量子噪声锁相的研究[D]. 刘志强.山西大学2018
  • [3].压缩态光场锁定和探测系统的实验研究[D]. 陈朝勇.山西大学2018
  • [4].光通信波段低频压缩态光场的产生及应用[D]. 要立婷.山西大学2017
  • [5].压缩态光场平衡零拍探测的位相锁定[D]. 张岩.山西大学2013
  • [6].真空压缩态光场注入光学腔的调控研究[D]. 邸克.山西大学2010
  • [7].量子成像压缩光源实验研究[D]. 豆西博.中国科学院研究生院(西安光学精密机械研究所)2010
  • [8].用外腔谐振倍频产生明亮绿光振幅压缩态光场[D]. 李莹.山西大学2005
  • [9].时间多模飞秒脉冲压缩态的产生[D]. 周驰华.山西大学2017
  • [10].1.5μm光通信波段明亮压缩态光场的产生及其Wigner函数的重构[D]. 孙志妮.山西大学2016
  • 论文详细介绍

    论文作者分别是来自山西大学的成健,发表于刊物山西大学2019-11-12论文,是一篇关于光通信波段论文,光纤马赫曾德尔干涉仪论文,低频压缩态论文,量子精密测量论文,山西大学2019-11-12论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自山西大学2019-11-12论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。

    标签:;  ;  ;  ;  ;  

    成健:1550 nm真空压缩态的制备及低频位相信号的量子增强测量论文
    下载Doc文档

    猜你喜欢