导读:本文包含了对向传播网络论文开题报告文献综述及选题提纲参考文献,主要关键词:叁相电流,神经网络,持续失流,断续失流
对向传播网络论文文献综述
郭文翀,蔡永智,冯小峰,韦晓明,危秋珍[1](2019)在《基于反向传播神经网络的失流故障智能识别研究》一文中研究指出为解决传统方法识别主网电流失流故障准确率低的问题,本文提出了一种基于反向传播神经网络的失流故障智能识别方法。本文利用反向传播的神经网络算法,通过梯度下降的方式反向修正各层权值,使网络输出误差达到可以接受的程度,从而达到对失流故障识别具有很好的自学习自适应能力的目的。首先根据对主网失流故障特征的研究,将失流故障分为持续失流与断续失流两种,构造对应指标,综合所有指标构建失流故障特征提取体系,最后建立反向神经网络来拟合失流故障提取体系。对数据进行识别,建立专家样本库,利用反向神经网络进行离线训练,训练完成后固定权值用于失流故障识别,从而准确输出失流故障事件。经实例验证,所提方法在识别准确率和识别效率优于一般分类识别方法,可实现失流故障的就地识别。(本文来源于《电力大数据》期刊2019年12期)
董梦帅,郄佳婷,孙佳乐,刘瑞峰[2](2019)在《基于反向传播神经网络的身份证号码识别研究》一文中研究指出基于反向传播算法的多层前馈网络(简称BP神经网络)在图像处理方面应用较为广泛。目前,身份证号码识别技术在图像识别领域迅猛发展,为提高识别身份证号码的速度及准确性,本文研究一种基于BP神经网络的身份证号码识别系统。首先,将身份证图像进行预处理,接着利用MATLAB对身份证号码进行定位以及分割,然后利用BP神经网络,通过调用MATLAB神经网络工具箱,设置相关参数对身份证号码进行训练、匹配数据库中的数字,最后识别并输出身份证号码。实验结果表明,基于BP神经网络的身份证号码识别正确率为95%,该系统具有较高的准确率以及鲁棒性。(本文来源于《科技风》期刊2019年30期)
王翔,赵南京,殷高方,孟德硕,马明俊[3](2019)在《基于反向传播神经网络的激光诱导荧光光谱塑料分类识别方法研究》一文中研究指出塑料具有成本低、质量好,可塑性强等优点被广泛用于生产生活等领域,但废弃塑料处置不当容易引发二次污染。回收再利用有望成为解决废弃塑料污染问题的关键手段,其前提是对废料的准确分选。传统分选手段耗费时间,效率低下,难以实现废弃塑料的快速、经济、有效分类。激光诱导荧光技术是一种快速灵敏的光谱检测技术。具有操作简便,检测效率高,样品使用量小等优点常被应用于水体、土壤中油类,多环芳烃等有机污染物的快速识别与定量分析。利用激光诱导荧光技术可以快速采集不同塑料的荧光光谱,结合相应的模式识别算法,可实现塑料材质的快速准确识别。实验采集了8种塑料(ABS, HDPE, PA66, PLA, PP, PET, PS, PVC)共358组激光诱导荧光光谱,依据特征峰信息构建358×10的光谱矩阵。利用主成份分析法削减原光谱矩阵中的线性相关量,提高数据精度。结果显示前3个主成分的累计方差贡献值达98.085%,足以表征原光谱矩阵的主要信息。将降维的主成分PC1, PC2, PC3作为输入进行光谱分类,其中同种塑料光谱聚合度高,元素构成不同的塑料如PA66, PLA, HDPE和PVC的光谱分离度较好,而元素构成相同的塑料如PET和PLA的光谱分离度较差。PCA算法并不能准确的对未知塑料进行识别。BP-神经网络具有收敛速度快,预测精度高等特点被广泛用于模式识别和分类研究。将经PCA算法得到的简化特征矩阵作为BP-神经网络算法的输入集,其中随机抽取256组数据作为BP-神经网络算法模型的训练集,剩余的102组数据作为模型检测集。BP神经网络的隐藏层设定值为1,激活函数选择双极性Sigmoid函数,输出层为8种塑料样品。识别结果显示, 102组数据中只有一组HDPE光谱数据被错识为PS,其余101组数据全部正确识别。8种塑料荧光光谱的综合识别准确率达到99%。研究结果表明激光诱导荧光技术结合BP-神经网络算法可实现不同材质塑料的快速准确识别。为实现废弃塑料的自动化智能分选,降低回收成本,减少废弃塑料危害提供新的参考。(本文来源于《光谱学与光谱分析》期刊2019年10期)
寇广,王硕,张达[4](2019)在《基于深度堆栈编码器和反向传播算法的网络安全态势要素识别》一文中研究指出网络安全态势要素识别的基础是对态势数据集进行有效的特征提取。针对反向传播(BP)神经网络对海量安全态势信息数据学习时过度依赖数据标签的问题,该文提出一种结合深度堆栈编码器和反向传播算法的网络安全态势要素识别方法,通过无监督学习算法逐层训练网络,在此基础上堆迭得到深度堆栈编码器,利用编码器提取数据集特征,实现了网络的无监督训练。仿真实验验证了该方法能有效提升安全态势感知的效能和准确度。(本文来源于《电子与信息学报》期刊2019年09期)
钱超群[5](2019)在《基于粒子群优化的反向传播神经网络算法在建筑物沉降预测中的应用》一文中研究指出神经网络具有结构简单,鲁棒性强,能够逼近任意函数的非线性映射能力,在多个领域得到了广泛应用。但其梯度下降法容易陷入局部最优,训练效率较低。采用粒子群算法(PSO)对BP神经网络进行改进,利用粒子群算法为BP神经网络提供精确的全局搜索能力,提高其训练效率和预测精度。基于建筑物实际沉降观测数据,对BP神经网络和PSO-BP神经网络进行对比分析。结果表明,PSO-BP神经网络的训练效果获得了较大提升,预测精度提升了约61%,预测结果明显优于传统BP神经网络。(本文来源于《建筑技术开发》期刊2019年13期)
张辛宬[6](2019)在《基于隐马尔科夫模型及反向传播神经网络的音效素材分类》一文中研究指出随着多媒体技术发展和计算机运算效率提高,多媒体信息数据呈现快速增长的趋势。目前在国内广播电影电视行业的音效剪辑仅依靠人工听辨音效素材,由于素材声源混杂,且具有丰富语义及听觉特性,要从海量的音效素材中找到目标文件耗时且低效,因此迫切需要一个音效素材自动分类系统。本研究首次在广播电影电视行业内部应用机器学习方法对音效素材的自动分类进行探索,通过对音效素材提取特征参数建立标准数据集,采用不同的算法对于数据集学习训练并建立了基于反向传播神经网络的音效分类原型系统。研究核心为音频数据的相似度匹配算法以及音频数据的标注处理。主要工作及研究成果如下:1、实验对4074个音频文件分别提取了短时能量、短时平均过零率以及梅尔频率倒谱系数及其差分这叁类特征参数,根据不同类型算法建立了相应标准数据样本集。2、分别构建隐马尔科夫模型和反向传播神经网络模型对样本进行训练识别得到分类准确率并分别测试模型的性能;对两种算法及相关研究从算法结构、训练时间和识别率进行扩展讨论。结果表明:对于含有复杂声音来源且有较多易混淆元素的音效素材进行分类,反向传播神经网络训练方法更易实现效果,平均识别率接近90%左右。3、建立基于反向传播神经网络的音效分类原型系统,以便于今后音频工作者使用。(本文来源于《华南理工大学》期刊2019-04-12)
戴亚春,杨超,骆志高[7](2019)在《基于反向传播神经网络的压制成型工艺参数优化》一文中研究指出利用反向传播神经网络的可预测性,基于Matlab软件进行压制成型工艺参数优化。以成型温度、成型压力、成型时间及升温速率这四个工艺参数为输入因素,以结合强度、摩擦因数和磨损量这叁个性能评价指标为输出参数,建立反向传播神经网络模型,进行训练学习与仿真计算,并进行检验。通过这一反向传播神经网络模型,可以预测不同工艺参数组合下的压制成型制品性能评价指标。通过研究确认,当成型温度为332.32~348.04℃,成型压力为9.39 MPa~9.84 MPa,成型时间为48.87~51.18 min,升温速率为5.86~6.14℃/min时,压制成型的金属塑料自润滑复合材料综合性能最佳。(本文来源于《机械制造》期刊2019年03期)
甄文冬,陈进,张莉莉[8](2019)在《基于改进粒子群优化-反向传播神经网络的制造业产能预测》一文中研究指出为了精准预测制造业产能,对粒子群优化算法和反向传播神经网络进行研究,进而提出基于改进粒子群优化-反向传播神经网络的制造业产能预测方法。在这一预测方法中,通过粒子群优化算法对反向传播神经网络的权值和阈值进行优化搜索,同时引入自适应变异算子,避免粒子群优化算法陷入局部极值,并通过MATLAB软件对制造业产能进行预测。研究结果表明,改进粒子群优化-反向传播神经网络的预测效果优于粒子群优化-反向传播神经网络和反向传播神经网络。(本文来源于《机械制造》期刊2019年03期)
吾木提·艾山江,买买提·沙吾提,马春玥[9](2019)在《基于分数阶微分和连续投影算法-反向传播神经网络的小麦叶片含水量高光谱估算》一文中研究指出为了探索分数阶微分在高光谱估算小麦叶片含水量上的可行性,在农田尺度上,利用春小麦野外光谱数据与实测叶片含水量数据,以0.2阶为步长,计算光谱0~2阶微分,并分析其与小麦叶片含水量的相关性,再利用连续投影算法(SPA)从通过0.01水平显着性检验的波段中筛选出估算叶片含水量的最佳波段组合,并建立估算春小麦叶片含水量的反射传播(BP)神经网络模型。结果表明:分数阶微分可以细化小麦叶片含水量与光谱数据相关性的变化趋势;分数阶微分处理后,相关系数通过0.01水平显着性检验的波段数量呈现先增后减的趋势,在不同的波段范围内,分数阶微分的最佳阶数也有所不同;SPA筛选出的敏感波段基本上集中在红光、近红外波段范围内,1.2阶微分后水分敏感波段数最多,达到13个;所建立的模型中,基于1.8阶微分建立的6-4-1结构的BP神经网络模型为最佳模型,其建模组均方根误差为0.701,决定系数为0.751,验证组的均方根误差为0.227,决定系数为0.917,相对分析误差为3.253,说明了分数阶微分后的模型稳定性和预测能力较整数阶微分得到明显的提升,可为高光谱定量反演春小麦叶片含水量提供参考。(本文来源于《激光与光电子学进展》期刊2019年15期)
刘光达,魏星,张尚,蔡靖,刘颂阳[10](2019)在《基于改进遗传算法优化反向传播神经网络的癫痫发作检测方法分析》一文中研究指出为了提高计算机化癫痫发作检测的准确性和检测效率,本文提出了一种基于改进遗传算法的优化反向传播(IGA-BP)神经网络的癫痫诊断方法,以期利用该方法可以实现临床癫痫病症的快速、高效检测。该方法首先对癫痫脑电信号进行线性与非线性相结合的特征提取,通过高斯混合模型(GMM)对癫痫特征聚簇集合分析,利用最大期望(EM)算法估算高斯混合模型参量,获取遗传算法(GA)选择算子的最优参数组合,实现对遗传算法的改进,用改进的遗传算法调整反向传播(BP)神经网络以获取最佳初始权值和阈值,建立改进遗传算法优化的BP神经网络模型。利用该模型对癫痫脑电信号分类识别,最终实现癫痫病症的自动检测。与传统遗传算法优化的BP(GA-BP)神经网络相比较,本文所提出的方法提高了种群的收敛速度、减小了分类误差,在癫痫病症自动检测中提高了检测准确率并缩短了检测时间,在临床癫痫发作诊断中具有重要的应用价值。(本文来源于《生物医学工程学杂志》期刊2019年01期)
对向传播网络论文开题报告
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
基于反向传播算法的多层前馈网络(简称BP神经网络)在图像处理方面应用较为广泛。目前,身份证号码识别技术在图像识别领域迅猛发展,为提高识别身份证号码的速度及准确性,本文研究一种基于BP神经网络的身份证号码识别系统。首先,将身份证图像进行预处理,接着利用MATLAB对身份证号码进行定位以及分割,然后利用BP神经网络,通过调用MATLAB神经网络工具箱,设置相关参数对身份证号码进行训练、匹配数据库中的数字,最后识别并输出身份证号码。实验结果表明,基于BP神经网络的身份证号码识别正确率为95%,该系统具有较高的准确率以及鲁棒性。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
对向传播网络论文参考文献
[1].郭文翀,蔡永智,冯小峰,韦晓明,危秋珍.基于反向传播神经网络的失流故障智能识别研究[J].电力大数据.2019
[2].董梦帅,郄佳婷,孙佳乐,刘瑞峰.基于反向传播神经网络的身份证号码识别研究[J].科技风.2019
[3].王翔,赵南京,殷高方,孟德硕,马明俊.基于反向传播神经网络的激光诱导荧光光谱塑料分类识别方法研究[J].光谱学与光谱分析.2019
[4].寇广,王硕,张达.基于深度堆栈编码器和反向传播算法的网络安全态势要素识别[J].电子与信息学报.2019
[5].钱超群.基于粒子群优化的反向传播神经网络算法在建筑物沉降预测中的应用[J].建筑技术开发.2019
[6].张辛宬.基于隐马尔科夫模型及反向传播神经网络的音效素材分类[D].华南理工大学.2019
[7].戴亚春,杨超,骆志高.基于反向传播神经网络的压制成型工艺参数优化[J].机械制造.2019
[8].甄文冬,陈进,张莉莉.基于改进粒子群优化-反向传播神经网络的制造业产能预测[J].机械制造.2019
[9].吾木提·艾山江,买买提·沙吾提,马春玥.基于分数阶微分和连续投影算法-反向传播神经网络的小麦叶片含水量高光谱估算[J].激光与光电子学进展.2019
[10].刘光达,魏星,张尚,蔡靖,刘颂阳.基于改进遗传算法优化反向传播神经网络的癫痫发作检测方法分析[J].生物医学工程学杂志.2019