徐学翔:Dynamical evolution of photon-added thermal state in thermal reservoir论文

徐学翔:Dynamical evolution of photon-added thermal state in thermal reservoir论文

本文主要研究内容

作者徐学翔,袁洪春(2019)在《Dynamical evolution of photon-added thermal state in thermal reservoir》一文中研究指出:The dynamical behavior of a photon-added thermal state(PATS) in a thermal reservoir is investigated by virtue of Wigner function(WF) and Wigner logarithmic negativity(WLN), where this propagation model is abstracted as an input–output problem in a thermal-loss channel. The density operator of the output optical field at arbitrary time can be expressed in the integration form of the characteristics function of the input optical field. The exact analytical expression of WF is given, which is closely related to the Laguerre polynomial and is dependent on the evolution time and other interaction parameters(related with the initial field and the reservoir). Based on the WLN, we observe the dynamical evolution of the PATS in the thermal reservoir. It is shown that the thermal noise will make the PATS lose the non-Gaussianity.

Abstract

The dynamical behavior of a photon-added thermal state(PATS) in a thermal reservoir is investigated by virtue of Wigner function(WF) and Wigner logarithmic negativity(WLN), where this propagation model is abstracted as an input–output problem in a thermal-loss channel. The density operator of the output optical field at arbitrary time can be expressed in the integration form of the characteristics function of the input optical field. The exact analytical expression of WF is given, which is closely related to the Laguerre polynomial and is dependent on the evolution time and other interaction parameters(related with the initial field and the reservoir). Based on the WLN, we observe the dynamical evolution of the PATS in the thermal reservoir. It is shown that the thermal noise will make the PATS lose the non-Gaussianity.

论文参考文献

  • [1].Non-Markovian dynamics of a qubit in a reservoir: different solutions of non-Markovian master equation[J]. 丁邦福,王小云,唐艳芳,米贤武,赵鹤平.  Chinese Physics B.2011(06)
  • [2].Investigations into quantum correlation of coupled qubits in a squeezed vacuum reservoir[J]. 嵇英华,刘咏梅.  Chinese Physics B.2013(02)
  • [3].Diffusion dynamics in external noise-activated non-equilibrium open system-reservoir coupling environment[J]. 王春阳.  Chinese Physics B.2013(07)
  • [4].Dynamical Change of Quantum Fisher Information of Cavity-Reservoir Systems[J]. 黄江,谢钦.  Communications in Theoretical Physics.2016(04)
  • [5].Modulating quantum Fisher information of qubit in dissipative cavity by coupling strength[J]. 林丹萍,刘禹,邹红梅.  Chinese Physics B.2018(11)
  • [6].Zero-Absorption Isolines in a 2-Photon 2-Level Atom Model[J]. S.S.Hassan,R.A.Alharbey.  Communications in Theoretical Physics.2017(07)
  • [7].Distillability sudden death in a two qutrit systems under a thermal reservoir[J]. 黄江,方卯发,杨百元,刘翔.  Chinese Physics B.2012(08)
  • [8].A Quantum Dynamical Mode for the Control of Decoherence[J]. Huang Wan-Xia Wang Qin-Mou Institute of Physics Department and Electronic Information,Anhui Normal University,Wuhu 241000,China.  Communications in Theoretical Physics.2005(01)
  • [9].Controllable Absorption and Dispersion Properties of an RF-driven Five-Level Atom in a Double-Band Photonic-Band-Gap Material[J]. 丁春玲,李家华,杨晓雪.  Communications in Theoretical Physics.2011(01)
  • [10].Nonlinear properties of quantum dot semiconductor optical amplifiers at 1.3μm Invited Paper[J]. D.Bimberg,C.Meuer,M.Lmmlin,S.Liebich,J.Kim,A.Kovsh,I.Krestnikov,G.Eisenstein.  Chinese Optics Letters.2008(10)
  • 论文详细介绍

    论文作者分别是来自Chinese Physics B的徐学翔,袁洪春,发表于刊物Chinese Physics B2019年11期论文,是一篇关于,Chinese Physics B2019年11期论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自Chinese Physics B2019年11期论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。

    标签:;  

    徐学翔:Dynamical evolution of photon-added thermal state in thermal reservoir论文
    下载Doc文档

    猜你喜欢