导读:本文包含了电容失配校正论文开题报告文献综述及选题提纲参考文献,主要关键词:模数转换器,逐次逼近,最小均方算法,动态元件匹配
电容失配校正论文文献综述
陈晓青,叶凡[1](2018)在《非二进制SAR ADC的电容失配校正方法》一文中研究指出研究13比特逐次逼近型模数转换器的电容失配问题,提出结合DEM技术的基于LMS算法的校正方法。分析电容失配对权重的影响,为减小高精度ADC的面积开销,采用冗余结构的分段电容阵列,降低对电容失配的要求,为校正提供条件,设计基于LMS算法的结合DEM技术的校正方法。在MATLAB中搭建模型进行仿真,仿真结果表明,采用校正方法后INL可以达到-1.36/1.26LSB。(本文来源于《计算机工程与设计》期刊2018年06期)
李海彬[2](2017)在《应用于高速高精度Pipelined ADC中电容失配校正算法的研究》一文中研究指出随着技术的发展,各种应用对ADC(Analog to Digital Converter,模数转换器)的要求也越来越高。在众多的ADC架构中,Pipelined ADC(流水线型ADC)被认为是同时兼具高速度、低功耗、高精度的一种架构。近年来工艺的飞速发展并没有给Pipelined ADC的性能带来很大的提升,主要是因为在Pipelined ADC中影响性能的主要因素是电容失配以及放大器增益不足。放大器增益的不足可以通过增加放大器的级数或者采用Gain-boosting技术来解决;电容失配,可以通过增加电容面积的方法来减小,但这也就意味着功耗的增加。这些都是与消费类电子低功耗的要求相悖的。因此对于电容失配的解决方法,人们更加倾向于通过校正算法来实现。由于数字电路在更小的工艺节点中的优势更加明显,因此校正算法更希望是通过数字电路来实现。校正算法必须包括两个过程,第一是对误差的测量,第二是对ADC输出结果的补偿与校正。根据ADC在使用过程中是否需要一个独立的校正过程,又将校正算法分为前端校正算法和后端校正算法。相较于前端校正算法,后端校正算法由于是实时校正,因此对环境、温度等因素的影响更具有鲁棒性,也更加的智能化。因此ADC中电容失配校正算法更加趋向于后端校正。目前针对于采用1.5-bit/stage MDAC的Pipelined ADC的数字校正技术大都通过注入伪随机码的形式测量误差,并在数字域中对结果进行校正。这种校正算法最大的缺点是注入的随机向量会大大减小ADC的输入范围。相较于1.5-bit/stage MDAC,>=2.5bit/stage MDAC在降低对工艺的要求的同时,在功耗上也具有更大的优势。然而目前针对于采用>=2.5-bit/stage MDAC的Pipelined ADC中电容失配校正算法的研究多集中于数字前端校正,对于数字后端校正算法则鲜有报道。本课题提出了一种适用于采用2.5-bit/stage MDAC的Pipelined ADC中电容失配的数字后端校正算法,并在MATLAB上对其可行性、准确性、稳定性进行了验证。应用此技术,设计了一款分辨率为14 bits、采样率为40MS/s的Pipelined ADC。本课题采用X-fab 0.18um工艺,进行了电路图的设计与验证,版图的设计与验证,并对芯片进行了测试。芯片整体面积4x4mm2;在3.3V电压下,整体功耗为110m W;芯片的测试结果表明,在2^26个时钟周期内,可将ENOB由10.3 bits提高至12.1 bits。(本文来源于《吉林大学》期刊2017-06-01)
电容失配校正论文开题报告
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
随着技术的发展,各种应用对ADC(Analog to Digital Converter,模数转换器)的要求也越来越高。在众多的ADC架构中,Pipelined ADC(流水线型ADC)被认为是同时兼具高速度、低功耗、高精度的一种架构。近年来工艺的飞速发展并没有给Pipelined ADC的性能带来很大的提升,主要是因为在Pipelined ADC中影响性能的主要因素是电容失配以及放大器增益不足。放大器增益的不足可以通过增加放大器的级数或者采用Gain-boosting技术来解决;电容失配,可以通过增加电容面积的方法来减小,但这也就意味着功耗的增加。这些都是与消费类电子低功耗的要求相悖的。因此对于电容失配的解决方法,人们更加倾向于通过校正算法来实现。由于数字电路在更小的工艺节点中的优势更加明显,因此校正算法更希望是通过数字电路来实现。校正算法必须包括两个过程,第一是对误差的测量,第二是对ADC输出结果的补偿与校正。根据ADC在使用过程中是否需要一个独立的校正过程,又将校正算法分为前端校正算法和后端校正算法。相较于前端校正算法,后端校正算法由于是实时校正,因此对环境、温度等因素的影响更具有鲁棒性,也更加的智能化。因此ADC中电容失配校正算法更加趋向于后端校正。目前针对于采用1.5-bit/stage MDAC的Pipelined ADC的数字校正技术大都通过注入伪随机码的形式测量误差,并在数字域中对结果进行校正。这种校正算法最大的缺点是注入的随机向量会大大减小ADC的输入范围。相较于1.5-bit/stage MDAC,>=2.5bit/stage MDAC在降低对工艺的要求的同时,在功耗上也具有更大的优势。然而目前针对于采用>=2.5-bit/stage MDAC的Pipelined ADC中电容失配校正算法的研究多集中于数字前端校正,对于数字后端校正算法则鲜有报道。本课题提出了一种适用于采用2.5-bit/stage MDAC的Pipelined ADC中电容失配的数字后端校正算法,并在MATLAB上对其可行性、准确性、稳定性进行了验证。应用此技术,设计了一款分辨率为14 bits、采样率为40MS/s的Pipelined ADC。本课题采用X-fab 0.18um工艺,进行了电路图的设计与验证,版图的设计与验证,并对芯片进行了测试。芯片整体面积4x4mm2;在3.3V电压下,整体功耗为110m W;芯片的测试结果表明,在2^26个时钟周期内,可将ENOB由10.3 bits提高至12.1 bits。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
电容失配校正论文参考文献
[1].陈晓青,叶凡.非二进制SARADC的电容失配校正方法[J].计算机工程与设计.2018
[2].李海彬.应用于高速高精度PipelinedADC中电容失配校正算法的研究[D].吉林大学.2017