本文主要研究内容
作者(2019)在《Alternative approach to thermodynamic phase transitions》一文中研究指出:One of the major open problems in theoretical physics is the lack of a consistent quantum gravity theory.Recent developments in our knowledge on thermodynamic phase transitions of black holes and their van der Waalslike behavior may provide an interesting quantum interpretation of classical gravity.Studying different methods of investigating phase transitions can extend our understanding of the nature of quantum gravity.In this paper,we present an alternative theoretical approach for finding thermodynamic phase transitions in the extended phase space.Unlike the standard methods based on the usual equation of state involving temperature,our approach uses a new quasiequation constructed from the slope of temperature versus entropy.This approach addresses some of the shortcomings of the other methods and provides a simple and powerful way of studying the critical behavior of a thermodynamical system.Among the applications of this approach,we emphasize the analytical demonstration of possible phase transition points and the identification of the non-physical range of horizon radii for black holes.
Abstract
One of the major open problems in theoretical physics is the lack of a consistent quantum gravity theory.Recent developments in our knowledge on thermodynamic phase transitions of black holes and their van der Waalslike behavior may provide an interesting quantum interpretation of classical gravity.Studying different methods of investigating phase transitions can extend our understanding of the nature of quantum gravity.In this paper,we present an alternative theoretical approach for finding thermodynamic phase transitions in the extended phase space.Unlike the standard methods based on the usual equation of state involving temperature,our approach uses a new quasiequation constructed from the slope of temperature versus entropy.This approach addresses some of the shortcomings of the other methods and provides a simple and powerful way of studying the critical behavior of a thermodynamical system.Among the applications of this approach,we emphasize the analytical demonstration of possible phase transition points and the identification of the non-physical range of horizon radii for black holes.
论文参考文献
论文详细介绍
论文作者分别是来自Chinese Physics C的,发表于刊物Chinese Physics C2019年11期论文,是一篇关于,Chinese Physics C2019年11期论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自Chinese Physics C2019年11期论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。