倪守朋:大豆分离蛋白聚合物电解质的构筑及超级电容器性能研究论文

倪守朋:大豆分离蛋白聚合物电解质的构筑及超级电容器性能研究论文

本文主要研究内容

作者倪守朋(2019)在《大豆分离蛋白聚合物电解质的构筑及超级电容器性能研究》一文中研究指出:超级电容器具有能量密度高,充放电速率快,循环寿命长等优点,因而受到广泛关注。电解质作为超级电容器的主要组成部件,它的状态和性能直接影响超级电容器的电化学性能和安全性。凝胶聚合物电解质(Gel polymer electrolytes,GPEs)既拥有液态电解质的高离子传导率,又兼具固态聚合物电解质的柔性,可以承担超级电容器隔膜和电解质的双重职责。GPEs主要由聚合物基体、增塑剂及电解质盐组成。聚合物基体需拥有良好的电解质亲和性、成膜性和稳定性,还需具有一定的力学强度。大豆分离蛋白(Soy protein isolate,SPI)作为一种环境友好的生物质材料,亲水性良好,且可成膜,能够作为聚合物基体用于制备GPEs。但SPI溶解困难,成膜后脆性大、柔韧性差等缺陷使其在电子能源器件中的应用受限。因此,本论文以SPI为基体材料,通过不同改性手段,制备了多种SPI基薄膜材料,并构建了双电层超级电容器;分别探究了增塑改性、交联改性及构建半互穿网络三种方式对超级电容器电化学性能的影响。首先,以三乙醇胺(Triethanolamine,TEA)为增塑剂对SPI进行增塑改性,制备了一系列柔韧性良好的TEA增塑改性SPI薄膜,结合1.0 mol L-1硫酸锂电解质,构筑了以活性炭为电极的双电层超级电容器(EDLC-X)。经TEA增塑改性的SPI薄膜表现出高达8.55X 10-3 S cm-1的离子传导率。构建的超级电容器电位窗口能够达到1.5 V,且表现出优异的双电层电容特性。当TEA的添加量为SPI质量的1.6倍时,超级电容器EDLC-1.6的电化学性能最好,在1.0Ag-1的电流密度下,其单电极质量比电容为113.44 F g-1,能量密度为8.86 W h kg-1。虽然电化学性能较为优异,但是,增塑改性后的SPI薄膜在电解质中质软,在水中无法长期稳定存在。为了提高SPI薄膜的耐水能力和力学强度,使用毒性小的乙二醇二缩水甘油醚(Ethylene glycol diglycidyl ether,EGDE)对 SPI 进行交联改性,制备了一系列交联 SPI薄膜。FTIR、XRD显示EGDE与SPI间发生了化学交联,交联SPI薄膜的力学、耐水性能相对于纯SPI薄膜大幅提高,当EGDE含量占SPI质量的20%时制备的改性SPI薄膜综合性能最优。构建的基于交联SPI GPEs的固态双电层超级电容器(S-EDLC-X),在低交联程度下,超级电容器S-EDLC-20%具有较好的电容保持率,当电流密度从1.0 A g-1增大至10 A g-1时,电容保持率能够维持在72%。虽然交联改善了 GPEs的强度的和稳定性,但基于交联SPI GPEs的S-EDLC-X电化学性能却呈现下降趋势。为了同步提升SPI基GPEs的电化学性能和耐水性,在交联SPI体系内引入亲水线性大分子轻乙基纤维素(Hydroxyethylcellulose,HEC),制备了具有半互穿网络(Semi-interpenetrating network,Semi-IPN)结构的改性 SPI 薄膜,并结合 L2SO4 电解质,形成了半互穿网络凝胶聚合物电解质(Semi-IPN GPEs)。以Semi-IPN GPEs组装了固态超级电容器(SSC-X)。研究结果表明:引入少量HEC即可大幅提高交联SPI薄膜的电解质亲和性,进而赋予Semi-IPN GPEs更优异的离子传导能力。Semi-IPN GPEs的离子传导率最高可达1.125×10-2 S cm-1,优于交联SPI基GPEs的离子传导率。HEC占10%时,构建的固态柔性超级电容器SSC-10%表现出最优异的循环稳定性和充放电可逆性;弯折测试显示,SSC-10%在任意弯曲角度下均能保持优异的电化学性能,拥有良好的柔性,且整体电化学性能优于由商业水性PP/PE隔膜组装的超级电容器。

Abstract

chao ji dian rong qi ju you neng liang mi du gao ,chong fang dian su lv kuai ,xun huan shou ming chang deng you dian ,yin er shou dao an fan guan zhu 。dian jie zhi zuo wei chao ji dian rong qi de zhu yao zu cheng bu jian ,ta de zhuang tai he xing neng zhi jie ying xiang chao ji dian rong qi de dian hua xue xing neng he an quan xing 。ning jiao ju ge wu dian jie zhi (Gel polymer electrolytes,GPEs)ji yong you ye tai dian jie zhi de gao li zi chuan dao lv ,you jian ju gu tai ju ge wu dian jie zhi de rou xing ,ke yi cheng dan chao ji dian rong qi ge mo he dian jie zhi de shuang chong zhi ze 。GPEszhu yao you ju ge wu ji ti 、zeng su ji ji dian jie zhi yan zu cheng 。ju ge wu ji ti xu yong you liang hao de dian jie zhi qin he xing 、cheng mo xing he wen ding xing ,hai xu ju you yi ding de li xue jiang du 。da dou fen li dan bai (Soy protein isolate,SPI)zuo wei yi chong huan jing you hao de sheng wu zhi cai liao ,qin shui xing liang hao ,ju ke cheng mo ,neng gou zuo wei ju ge wu ji ti yong yu zhi bei GPEs。dan SPIrong jie kun nan ,cheng mo hou cui xing da 、rou ren xing cha deng que xian shi ji zai dian zi neng yuan qi jian zhong de ying yong shou xian 。yin ci ,ben lun wen yi SPIwei ji ti cai liao ,tong guo bu tong gai xing shou duan ,zhi bei le duo chong SPIji bao mo cai liao ,bing gou jian le shuang dian ceng chao ji dian rong qi ;fen bie tan jiu le zeng su gai xing 、jiao lian gai xing ji gou jian ban hu chuan wang lao san chong fang shi dui chao ji dian rong qi dian hua xue xing neng de ying xiang 。shou xian ,yi san yi chun an (Triethanolamine,TEA)wei zeng su ji dui SPIjin hang zeng su gai xing ,zhi bei le yi ji lie rou ren xing liang hao de TEAzeng su gai xing SPIbao mo ,jie ge 1.0 mol L-1liu suan li dian jie zhi ,gou zhu le yi huo xing tan wei dian ji de shuang dian ceng chao ji dian rong qi (EDLC-X)。jing TEAzeng su gai xing de SPIbao mo biao xian chu gao da 8.55X 10-3 S cm-1de li zi chuan dao lv 。gou jian de chao ji dian rong qi dian wei chuang kou neng gou da dao 1.5 V,ju biao xian chu you yi de shuang dian ceng dian rong te xing 。dang TEAde tian jia liang wei SPIzhi liang de 1.6bei shi ,chao ji dian rong qi EDLC-1.6de dian hua xue xing neng zui hao ,zai 1.0Ag-1de dian liu mi du xia ,ji chan dian ji zhi liang bi dian rong wei 113.44 F g-1,neng liang mi du wei 8.86 W h kg-1。sui ran dian hua xue xing neng jiao wei you yi ,dan shi ,zeng su gai xing hou de SPIbao mo zai dian jie zhi zhong zhi ruan ,zai shui zhong mo fa chang ji wen ding cun zai 。wei le di gao SPIbao mo de nai shui neng li he li xue jiang du ,shi yong du xing xiao de yi er chun er su shui gan you mi (Ethylene glycol diglycidyl ether,EGDE)dui SPI jin hang jiao lian gai xing ,zhi bei le yi ji lie jiao lian SPIbao mo 。FTIR、XRDxian shi EGDEyu SPIjian fa sheng le hua xue jiao lian ,jiao lian SPIbao mo de li xue 、nai shui xing neng xiang dui yu chun SPIbao mo da fu di gao ,dang EGDEhan liang zhan SPIzhi liang de 20%shi zhi bei de gai xing SPIbao mo zeng ge xing neng zui you 。gou jian de ji yu jiao lian SPI GPEsde gu tai shuang dian ceng chao ji dian rong qi (S-EDLC-X),zai di jiao lian cheng du xia ,chao ji dian rong qi S-EDLC-20%ju you jiao hao de dian rong bao chi lv ,dang dian liu mi du cong 1.0 A g-1zeng da zhi 10 A g-1shi ,dian rong bao chi lv neng gou wei chi zai 72%。sui ran jiao lian gai shan le GPEsde jiang du de he wen ding xing ,dan ji yu jiao lian SPI GPEsde S-EDLC-Xdian hua xue xing neng que cheng xian xia jiang qu shi 。wei le tong bu di sheng SPIji GPEsde dian hua xue xing neng he nai shui xing ,zai jiao lian SPIti ji nei yin ru qin shui xian xing da fen zi qing yi ji qian wei su (Hydroxyethylcellulose,HEC),zhi bei le ju you ban hu chuan wang lao (Semi-interpenetrating network,Semi-IPN)jie gou de gai xing SPI bao mo ,bing jie ge L2SO4 dian jie zhi ,xing cheng le ban hu chuan wang lao ning jiao ju ge wu dian jie zhi (Semi-IPN GPEs)。yi Semi-IPN GPEszu zhuang le gu tai chao ji dian rong qi (SSC-X)。yan jiu jie guo biao ming :yin ru shao liang HECji ke da fu di gao jiao lian SPIbao mo de dian jie zhi qin he xing ,jin er fu yu Semi-IPN GPEsgeng you yi de li zi chuan dao neng li 。Semi-IPN GPEsde li zi chuan dao lv zui gao ke da 1.125×10-2 S cm-1,you yu jiao lian SPIji GPEsde li zi chuan dao lv 。HECzhan 10%shi ,gou jian de gu tai rou xing chao ji dian rong qi SSC-10%biao xian chu zui you yi de xun huan wen ding xing he chong fang dian ke ni xing ;wan she ce shi xian shi ,SSC-10%zai ren yi wan qu jiao du xia jun neng bao chi you yi de dian hua xue xing neng ,yong you liang hao de rou xing ,ju zheng ti dian hua xue xing neng you yu you shang ye shui xing PP/PEge mo zu zhuang de chao ji dian rong qi 。

论文参考文献

  • [1].超级电容器用RGO@P(VDF-HFP)/PAN基电极材料及P(VDF-HFP)多孔隔膜的制备及性能研究[D]. 贾瑞.渤海大学2019
  • [2].三维多孔氮掺杂碳材料自支撑柔性膜及其在高能量密度超级电容器上的应用[D]. 金雅楠.河南大学2019
  • [3].基于化学气相沉积石墨烯的平面片上微型超级电容器研究[D]. 刘佳宝.哈尔滨理工大学2019
  • [4].聚丙烯腈基复合碳纳米纤维膜的制备及其在超级电容器中的应用[D]. 付晶.武汉工程大学2018
  • [5].石墨烯基超级电容器和透明导电膜的制备研究[D]. 许子文.浙江理工大学2018
  • [6].弹性应变对薄膜超级电容器性能的调控[D]. 孙宇.中国石油大学(北京)2017
  • [7].纳米复合纤维柔性膜状电极及其固态超级电容器性能研究[D]. 张文文.南京理工大学2018
  • [8].V2O5/CNT自支撑薄膜电极的制备及性能研究[D]. 姚许.华中科技大学2017
  • [9].层层组装技术制备MnO2/CNS薄膜电极与其在超级电容器中的应用研究[D]. 李亚航.东北大学2015
  • [10].过渡金属硫化物及其复合材料的制备与电化学性能的研究[D]. 许文芳.合肥工业大学2019
  • 论文详细介绍

    论文作者分别是来自东北林业大学的倪守朋,发表于刊物东北林业大学2019-11-18论文,是一篇关于双电层超级电容器论文,凝胶聚合物电解质论文,大豆分离蛋白论文,改性论文,东北林业大学2019-11-18论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自东北林业大学2019-11-18论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。

    标签:;  ;  ;  ;  ;  

    倪守朋:大豆分离蛋白聚合物电解质的构筑及超级电容器性能研究论文
    下载Doc文档

    猜你喜欢