导读:本文包含了纳米碳管复合材料论文开题报告文献综述及选题提纲参考文献,主要关键词:3D打印,碳纳米管,聚合物复合材料,电气性能
纳米碳管复合材料论文文献综述
鲁浩,李楠,王海波,廖帮全,姜亚明[1](2019)在《碳纳米管复合材料的3D打印技术研究进展》一文中研究指出3D打印技术是一项根据计算机模型设计快速加工和制造复杂几何形状组件的增材制造技术之一。其基于叁维数据模型,通过电脑控制将材料进行逐层累积,最终将叁维模型变成立体实物。相比于传统制造方法,3D打印技术具有节约工时、易操作、不需要模具、组件几何形状可控性强等优势。随着该技术的发展,依据打印技术成型的核心、材料以及设备等产生了熔融沉积塑型、选择性激光烧结成型、光固化立体成型/数字光处理成型、溶剂浇铸成型等若干类型的3D打印技术。本文重点介绍其中最具代表性的4种3D打印成型工艺的原理和特点,基于碳纳米管增强聚合物复合材料,综述近年来不同3D打印成型工艺的研究进展,同时预测3D打印成型工艺在该领域会向着高精度、产业化、大众化和高集成度的方向发展,3D打印材料的研发也会更具前景。(本文来源于《材料工程》期刊2019年11期)
陈志,李超芹[2](2019)在《镀银玻璃微珠/碳纳米管复合材料制备与性能研究》一文中研究指出以镀银玻璃微珠和碳纳米管珠作为导电填料,硅橡胶作为基体,制备出了高导电橡胶。研究了镀银玻璃微珠、石墨烯和镀银玻璃微珠和石墨烯并用对硅橡胶力学性能和导电性能的影响。研究发现:两种填料均能在硅橡胶中分散均匀,镀银玻璃微珠的渗流阈值为250份左右,石墨烯的渗流阈值为20份左右,两种填料并用的渗流阈值为镀银玻璃微珠80份,石墨烯10份,在达到相同导电性时,两种填料并用比添加单一镀银玻璃微珠减少了添加量。(本文来源于《橡塑技术与装备》期刊2019年21期)
马秀敏,马峥,李蕾蕾,廖彤,侯保荣[3](2019)在《硫化钼敏化二氧化钛纳米管复合材料的制备及其对304不锈钢光致阴极保护性能的研究》一文中研究指出正如"水往低处流"一样,电子总是自发的从能量较高的负电势转移到能量较低的正电势处。目前,金属材料在日常生活的各个行业都具有广泛的应用。但是在使用过程中,金属电子总是自发的从金属中流到自然环境中,腐蚀就发生了。预防腐蚀最终的目的是保持金属体相中电子的总量。"河流汇聚大海",确不见其干涸,最主要的原因是海洋(或者陆地)上的水分吸收太阳的能量到达高空变成云,再变成雨落下来不断补充河流的水量。如果我们将(本文来源于《第十届全国腐蚀大会摘要集》期刊2019-10-24)
殷萌,胡银春,魏延,杜晶晶,连小洁[4](2019)在《碳纳米管复合材料在生物检测中的应用》一文中研究指出碳纳米管作为一种结构独特的一维纳米材料,不仅拥有优异的力学、电学、光学和磁学特性,还表现出良好的生物相容性和生物功能性。通过对碳纳米管进行修饰和改性,可制备出具备各种优良性能的碳纳米管复合材料,从而广泛应用于生物检测领域。综述了碳纳米管复合材料在药物检测、病毒检测、肿瘤检测以及基因检测方面的应用,并对目前亟待研究的重要问题及研究方向进行了展望。(本文来源于《化工新型材料》期刊2019年10期)
陶琳,李纯志,任亦起,李贺,陈建[5](2019)在《聚合物/碳纳米管复合材料的制备及催化喹啉手性氢化性能(英文)》一文中研究指出光学活性的1,2,3,4-四氢喹啉结构广泛存在于许多药物分子和天然生物碱中,在生物医药和农药化学等方面具有十分重要的应用.发展光学活性的1,2,3,4-四氢喹啉及衍生物的手性催化合成方法具有重要的学术和工业应用价值.2008年范青华课题组成功将手性二胺-Ru的阳离子型催化剂用于喹啉及衍生物的手性氢化反应中,有效克服了有机膦配体在空气中敏感的问题.近十几年来,喹啉及衍生物的手性氢化研究主要集中在均相催化体系.然而,均相催化体系面临着催化剂循环利用的困难,难以进行连续化工业生产.此外,手性药物合成中间体对纯度要求非常严格,残留贵金属催化剂的分离是均相催化体系中的一大问题.多相手性催化可有效解决上述问题,然而针对喹啉手性氢化的多相催化体系并不多见.本文中,我们通过自由基聚合的方法制备了骨架中富含手性二胺配体的多孔聚苯乙烯聚合物.在此基础上,通过在聚合过程中加入活性炭或碳纳米管,制备了聚合物/活性炭和聚合物/碳纳米管复合材料.在与Ru金属配合物进行配位和阴离子交换后,制备了一系列含VDPEN-RuOTf活性中心的手性固体催化剂.通过红外光谱、~(13)C核磁共振和元素分析等表征证实了聚合物及聚合物/碳材料复合材料的成功制备, N_2吸附表征表明聚合物/活性炭和聚合物/碳纳米管复合材料可以有效减少金属配位引起的聚合物材料比表面积的降低.固体催化剂红外光谱中出现了归属于C–F键及S=O键的特征振动峰,表明固体催化剂中含有VDPEN-RuOTf活性中心.所有的手性固体催化剂在2-甲基喹啉的手性氢化反应中均能得到90%的ee值.研究表明聚合物/碳材料复合材料在相同反应条件下表现出比纯聚合物更好的反应活性,其中聚合物/碳管复合材料在所有手性固体催化剂中表现出最高的反应活性,这可能源于碳管独特的管状形貌.以甲醇为溶剂,手性固体催化剂在循环使用过程中催化活性明显下降,红外光谱表征显示阴离子TfO~-的流失是催化剂失活的主要原因.以离子液为溶剂,手性固体催化剂的循环稳定性有所增加,这主要归因于离子液的离子限域作用抑制了TfO~-的流失.(本文来源于《Chinese Journal of Catalysis》期刊2019年10期)
郭富伟[6](2019)在《TiO_2-碳纳米管复合材料的制备和光催化性能》一文中研究指出以多壁碳纳米管(MWCNT)为载体,四氯化钛为前驱体,经常压水解获得了TiO_2/MWCNT纳米复合材料,对纳米复合材料的晶相组成、形貌和微结构等进行了表征,测试了在酸性、中性、碱性3种体系下复合材料对甲醇的电催化氧化性能。结果表明:复合材料的晶相由锐钛矿、金红石和MWCNT组成,锐钛矿和金红石均匀地分布于MWCNT的外表面,且复合材料中锐钛矿和金红石的含量和分布与制备过程中钛与碳的质量比有关;TiO_2与MWCNT复合后,复合材料对甲醇的电催化氧化性能显着提高,且其性能与TiO_2在MWCNT外表面的含量和分布密切相关。方法 :采用常压水解法制备了TiO_2/MWCNT纳米复合材料,对纳米复合材料的晶相构成、外观等进行了表征,测试了在不同pH条件下复合材料对甲醇的电催化氧化性能。结果:TiO_2-碳纳米管复合材料对甲醇的电催化氧化性能显着提高,且其性能与TiO_2在MWCNT外表面的含量和分布密切相关。(本文来源于《化工设计通讯》期刊2019年08期)
王柏臣,刘鸽,李伟,高禹[7](2019)在《纳米碳混杂多孔复合材料的制备与性能》一文中研究指出以2-乙基-4-甲基咪唑(2-ethyl-4-methyl,2,4-EMI)为还原剂,通过水热反应将氧化石墨烯和碳纳米管混杂形成纳米碳混杂材料(GO/CNTs/EMI)。以不同反应时间制备的碳纳米混杂材料(GO/CNTs/EMI-2 h和GO/CNTs/EMI-10 h)作为稳定剂,分别制备水包油型(O/W)和油包水型(W/O)Pickering乳液。以苯乙烯(Styrene,St)为油相的W/O型Pickering乳液聚合得到纳米碳混杂聚苯乙烯(PS)多孔复合材料(GO/CNTs/PS),对其进行性能及微观形貌分析。结果表明,通过控制水热反应时间,可以形成结构和两亲性可控的纳米碳混杂稳定剂;在纳米碳混杂稳定剂中GO与CNTs质量比为6∶1时,初始GO浓度为6 mg·mL~(-1)条件下,多孔复合材料电导率最大;初始GO浓度为2 mg·mL~(-1)时,多孔复合材料的力学性能最佳。(本文来源于《沈阳航空航天大学学报》期刊2019年04期)
王卫芳,陆宝山,耿哲[8](2019)在《环氧树脂/石墨烯/多壁碳纳米管复合材料力学性能研究》一文中研究指出以环氧树脂(EP)为基体、石墨烯(GNP)和多壁碳纳米管(MWCNT)为增强材料制备了EP/GNP/MWCNT纳米复合材料,通过拉伸试验考察了GNP与MWCNT的混合比例对复合材料力学性能的影响。结果表明:当GNP与MWCNT的总添加量为0.3%、混合比例为50:50时,EP/GNP/MWCNT纳米复合材料的综合力学性能达到最佳,此时复合材料的弹性模量、拉伸屈服强度、拉伸断裂强度、破坏应变等均达到或接近最大值。(本文来源于《塑料科技》期刊2019年07期)
崔虹云,胡明,孙建波,王天浩,张漫[9](2019)在《金属基碳纳米管复合材料的研究及展望》一文中研究指出将碳纳米管引入到金属中形成金属基碳纳米管复合材料,其硬度、强度、磨损性能、热稳定性能等都得到了提高,使得金属基复合材料在性能上又有了质的飞跃。综述了铜、铝、铁、镁金属及其合金的国内外发展应用现状,介绍了将碳纳米管引入到金属中制备金属基碳纳米管复合材料的方法,并对金属基碳纳米管复合材料的发展进行了展望。(本文来源于《热加工工艺》期刊2019年14期)
管强强,王勇,赵强,李晋平[10](2019)在《Pt-Sn/Poly(triazine imide)-碳纳米管复合材料的电催化性能》一文中研究指出以不同质量比poly(triazine imide)(PTI)-碳纳米管(carbon nanotubes, CNTs)复合物为载体,通过乙二醇还原Pt/Sn前驱体制备了Pt-Sn/PTI-CNTs催化剂。通过X射线衍射(XRD)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)对制备的催化剂结构、形貌和成分进行表征。结果表明,Pt-Sn纳米粒子在载体上高度分散,粒径分布在2.6~3.7 nm之间,其主要以金属Pt和SnO_x的形式存在。循环伏安(CV)测试表明,PTI的引入对Pt-Sn/PTI-CNTs复合物的催化活性具有明显提升作用,但是加入的量过多会导致电催化性能下降。当加入20%(质量分数)的PTI时,催化剂具有最大的电化学活性面积(ECSA)46.20 m~2/g,乙醇电催化性能最佳。(本文来源于《功能材料》期刊2019年06期)
纳米碳管复合材料论文开题报告
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
以镀银玻璃微珠和碳纳米管珠作为导电填料,硅橡胶作为基体,制备出了高导电橡胶。研究了镀银玻璃微珠、石墨烯和镀银玻璃微珠和石墨烯并用对硅橡胶力学性能和导电性能的影响。研究发现:两种填料均能在硅橡胶中分散均匀,镀银玻璃微珠的渗流阈值为250份左右,石墨烯的渗流阈值为20份左右,两种填料并用的渗流阈值为镀银玻璃微珠80份,石墨烯10份,在达到相同导电性时,两种填料并用比添加单一镀银玻璃微珠减少了添加量。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
纳米碳管复合材料论文参考文献
[1].鲁浩,李楠,王海波,廖帮全,姜亚明.碳纳米管复合材料的3D打印技术研究进展[J].材料工程.2019
[2].陈志,李超芹.镀银玻璃微珠/碳纳米管复合材料制备与性能研究[J].橡塑技术与装备.2019
[3].马秀敏,马峥,李蕾蕾,廖彤,侯保荣.硫化钼敏化二氧化钛纳米管复合材料的制备及其对304不锈钢光致阴极保护性能的研究[C].第十届全国腐蚀大会摘要集.2019
[4].殷萌,胡银春,魏延,杜晶晶,连小洁.碳纳米管复合材料在生物检测中的应用[J].化工新型材料.2019
[5].陶琳,李纯志,任亦起,李贺,陈建.聚合物/碳纳米管复合材料的制备及催化喹啉手性氢化性能(英文)[J].ChineseJournalofCatalysis.2019
[6].郭富伟.TiO_2-碳纳米管复合材料的制备和光催化性能[J].化工设计通讯.2019
[7].王柏臣,刘鸽,李伟,高禹.纳米碳混杂多孔复合材料的制备与性能[J].沈阳航空航天大学学报.2019
[8].王卫芳,陆宝山,耿哲.环氧树脂/石墨烯/多壁碳纳米管复合材料力学性能研究[J].塑料科技.2019
[9].崔虹云,胡明,孙建波,王天浩,张漫.金属基碳纳米管复合材料的研究及展望[J].热加工工艺.2019
[10].管强强,王勇,赵强,李晋平.Pt-Sn/Poly(triazineimide)-碳纳米管复合材料的电催化性能[J].功能材料.2019