本文主要研究内容
作者(2019)在《Influencing factors and prediction of ambient Peroxyacetyl nitrate concentration in Beijing,China》一文中研究指出:Peroxyacyl nitrates(PANs) are important secondary pollutants in ground-level atmosphere.Accurate prediction of atmospheric pollutant concentrations is crucial to guide effective precautions for before and during specific pollution events. In this study, four models based on the back-propagation(BP) artificial neural network(ANN) and multiple linear regression(MLR) methods were used to predict the hourly average PAN concentrations at Peking University, Beijing, in 2014. The model inputs were atmospheric pollutant data and meteorological parameters. Model 3 using a BP-ANN based on the original variables achieved the best prediction results among the four models, with a correlation coefficient(R) of 0.7089, mean bias error of -0.0043 ppb, mean absolute error of 0.4836?ppb, root mean squared error of 0.5320?ppb, and Willmott’s index of agreement of 0.8214. Based on a comparison of the performance indices of the MLR and BP-ANN models, we concluded that the BP-ANN model was able to capture the highly non-linear relationships between PAN concentration and the conventional atmospheric pollutant and meteorological parameters,providing more accurate results than the traditional MLR models did, with a markedly higher goodness of R. The selected meteorological and atmospheric pollutant parameters described a sufficient amount of PAN variation, and thus provided satisfactory prediction results. More specifically, the BP-ANN model performed very well for capturing the variation pattern when PAN concentrations were low. The findings of this study address some of the existing knowledge gaps in this research field and provide a theoretical basis for future regional air pollution control.
Abstract
Peroxyacyl nitrates(PANs) are important secondary pollutants in ground-level atmosphere.Accurate prediction of atmospheric pollutant concentrations is crucial to guide effective precautions for before and during specific pollution events. In this study, four models based on the back-propagation(BP) artificial neural network(ANN) and multiple linear regression(MLR) methods were used to predict the hourly average PAN concentrations at Peking University, Beijing, in 2014. The model inputs were atmospheric pollutant data and meteorological parameters. Model 3 using a BP-ANN based on the original variables achieved the best prediction results among the four models, with a correlation coefficient(R) of 0.7089, mean bias error of -0.0043 ppb, mean absolute error of 0.4836?ppb, root mean squared error of 0.5320?ppb, and Willmott’s index of agreement of 0.8214. Based on a comparison of the performance indices of the MLR and BP-ANN models, we concluded that the BP-ANN model was able to capture the highly non-linear relationships between PAN concentration and the conventional atmospheric pollutant and meteorological parameters,providing more accurate results than the traditional MLR models did, with a markedly higher goodness of R. The selected meteorological and atmospheric pollutant parameters described a sufficient amount of PAN variation, and thus provided satisfactory prediction results. More specifically, the BP-ANN model performed very well for capturing the variation pattern when PAN concentrations were low. The findings of this study address some of the existing knowledge gaps in this research field and provide a theoretical basis for future regional air pollution control.
论文参考文献
论文详细介绍
论文作者分别是来自Journal of Environmental Sciences的,发表于刊物Journal of Environmental Sciences2019年03期论文,是一篇关于,Journal of Environmental Sciences2019年03期论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自Journal of Environmental Sciences2019年03期论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。