本文主要研究内容
作者(2019)在《Effects of Y and Zn additions on electrical conductivity and electromagnetic shielding effectiveness of Mg-Y-Zn alloys》一文中研究指出:Microstructure, electrical conductivity, and electromagnetic interference(EMI) shielding effectiveness(SE) of cast Mg-x Zn-y Y(x = 2–5, y = 1–10) alloys were systematically investigated to understand the effects of Zn and Y additions on electrical conductivity and electromagnetic shielding effectiveness of the alloys.Experimental results indicate that the electrical conductivity and SE of the Mg-x Zn-y Y alloys decrease with Y/Zn ratio. Electrical conductivity is the main factor that affects the electromagnetic shielding properties and the variation tendency of electromagnetic shielding properties of the Mg-x Zn-y Y alloys is consistent with conductivity. Valence of Y and Zn atoms, configuration of extranuclear electron and volumetric difference are main reasons for the variations in the electrical conductivity. A high density of second phase and the formation of semi-continuous network structure can also improve the SE value at high frequencies.
Abstract
Microstructure, electrical conductivity, and electromagnetic interference(EMI) shielding effectiveness(SE) of cast Mg-x Zn-y Y(x = 2–5, y = 1–10) alloys were systematically investigated to understand the effects of Zn and Y additions on electrical conductivity and electromagnetic shielding effectiveness of the alloys.Experimental results indicate that the electrical conductivity and SE of the Mg-x Zn-y Y alloys decrease with Y/Zn ratio. Electrical conductivity is the main factor that affects the electromagnetic shielding properties and the variation tendency of electromagnetic shielding properties of the Mg-x Zn-y Y alloys is consistent with conductivity. Valence of Y and Zn atoms, configuration of extranuclear electron and volumetric difference are main reasons for the variations in the electrical conductivity. A high density of second phase and the formation of semi-continuous network structure can also improve the SE value at high frequencies.
论文参考文献
论文详细介绍
论文作者分别是来自Journal of Materials Science & Technology的,发表于刊物Journal of Materials Science & Technology2019年06期论文,是一篇关于,Journal of Materials Science & Technology2019年06期论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自Journal of Materials Science & Technology2019年06期论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。