袁龙飞:三元巨介电陶瓷XO-CuO-TiO2(XO=CdO,TaO2.5)的制备及Cu偏析对介电性能的影响论文

袁龙飞:三元巨介电陶瓷XO-CuO-TiO2(XO=CdO,TaO2.5)的制备及Cu偏析对介电性能的影响论文

本文主要研究内容

作者袁龙飞(2019)在《三元巨介电陶瓷XO-CuO-TiO2(XO=CdO,TaO2.5)的制备及Cu偏析对介电性能的影响》一文中研究指出:电子信息工业的高速发展,对微型电容器的核心部件―高介电陶瓷的需求不断增加,使得高介电陶瓷材料成为研究的热点之一。但是关于陶瓷机理方面的研究一直存在着争论,这大大阻碍了陶瓷性能的改良和新陶瓷材料的制备。本论文从相图研究出发,结合陶瓷介电性能的测试,系统地研究了Cu的偏析对CdCu3Ti4O12基陶瓷晶粒导电率的影响,探讨了陶瓷中不同的晶界组分对陶瓷介电性能的贡献。主要结论有:1、Cd1-xCu3+x+2yTi4-yO12(-7≤x≤0.07,-1.333≤y≤2.91)亚固相图的建立及Cu的偏析对CdCu3Ti4O12介电性能的影响。利用固相反应法合成系列Cd1-xCu3+x+2y+x+2y Ti4-yO12(-7≤x≤0.07,-1.333≤y≤2.91)陶瓷样品,建立了亚固相图。结果显示在CdTiO3和CuO的相之间存在着CdTiO3的六方和正交相的共存现象。进一步对等Cu相(CdCu3Ti4O12)、富Cu相(Cd0.930Cu3.070Ti4O12)和贫Cu相(Cd1.137Cu2.863Ti4O12)陶瓷进行研究,探讨了Cu的价态和偏析对它们介电性能的影响。X射线光电子能谱(XPS)和高能X射线吸收近边结构分析(XANES)显示,在陶瓷内部的晶粒中,载流子跳跃的载体是Cu3+离子而不是以前报道的Cu+。2、Ti1-xCu2x-2.5yTayO2(0.05≤x≤1,0≤y≤0.667)三元体系的亚固相图和单固溶体Ti1-x(Cu0.333Ta0.667)xO2(0<x≤0.465)陶瓷中电子的极化行为研究。合成了49个样品,建立了Ti1-xCu2x-2.5yx-2.5y TayO2(0.05≤x≤1,0≤y≤0.667)三元体系的亚固相图。对不同掺杂量(x=0%、5%、18%、33%和45%)的Ti1-x(Cu0.333Ta0.667)xO2样品的微观结构,元素价态和介电性能研究发现,在该系列介电陶瓷中存在着包括自由载流子邻近跳跃极化,内部阻挡层电容效应和表面阻挡层电容效应等多重极化机制。极化机制之间的转变和共存影响着样品的介电性能。3、不同烧结条件下制备的Ti1-x(Cu0.333Ta0.667)xO2(x=5%、20%和45%)陶瓷的界面组成、极化行为和介电性能研究。通过调整烧结温度和时间合成了Ti1-x(Cu0.333Ta0.667)xO2(x=5%,20%和45%)系列陶瓷。除了1300oC烧结10 h得到的Ti0.55(Cu0.333Ta0.667)0.45O2样品中含有少量的杂相外,其它样品均为纯的金红石结构。微结构、价态、界面元素分布以及介电性质测试显示,低掺杂(x=5%)陶瓷,晶界处的非局域载流子传导机制为Mott跳跃传导,而对于高掺杂陶瓷(x=20%和45%)则遵循Arrhenius近邻跳跃传导。随着烧结温度和烧结时间的提高,晶粒尺寸的增大将增强(Cu+Ta)共掺杂金红石陶瓷的表面阻挡层电容效应(surface barrier layer capacitor effect,SBLC),进而导致介电常数升高。同时,由于晶界处铜的偏析而引起的富铜相或富钽相的析出,将进一步促进晶粒的生长。界面成分的变化也会引起晶界效应(internal barrier layer capacitor effect,IBLC)。在高烧结温度(1300 oC)下,制备的Ti0.8(Cu0.333Ta0.667)0.2O2陶瓷表现出很高的介电常数(ε’=65314)。这个巨介电常数应归因于陶瓷内部SBLC和IBLC极化机制的联合作用。因此,宏观烧结条件(温度和时间)可以控制微观界面性能,从而诱发相应的极化机制,进而导致金红石基陶瓷的介电性能不同。4、XCu3Ti4O12(X=Na1/2Nd1/2、Na1/2Sm1/2、Na1/2Gd1/2和Na2/3Ce1/3)陶瓷的介电性质研究。合成了XCu3Ti4O12(X=Na1/2Nd1/2、Na1/2Sm1/2、Na1/2Gd1/2和Na2/3Ce1/3)系列陶瓷。结构测试表明所有的样品均为单相体心立方钙钛矿结构。双阳离子替代对XCu3Ti4O12陶瓷晶粒的导电性影响很大。Na1/2Nd1/2Cu3Ti4O12陶瓷晶粒的导电率要远大于Na2/3Ce1/3Cu3Ti4O12陶瓷。当烧结温度高达1000oC时,Na1/2Nd1/2Cu3Ti4O12陶瓷表现出良好的介电性能:在宽的频率范围内(10-105Hz),陶瓷具有较高的介电常数(?104)和低的介电损耗(?0.01)。

Abstract

dian zi xin xi gong ye de gao su fa zhan ,dui wei xing dian rong qi de he xin bu jian ―gao jie dian tao ci de xu qiu bu duan zeng jia ,shi de gao jie dian tao ci cai liao cheng wei yan jiu de re dian zhi yi 。dan shi guan yu tao ci ji li fang mian de yan jiu yi zhi cun zai zhao zheng lun ,zhe da da zu ai le tao ci xing neng de gai liang he xin tao ci cai liao de zhi bei 。ben lun wen cong xiang tu yan jiu chu fa ,jie ge tao ci jie dian xing neng de ce shi ,ji tong de yan jiu le Cude pian xi dui CdCu3Ti4O12ji tao ci jing li dao dian lv de ying xiang ,tan tao le tao ci zhong bu tong de jing jie zu fen dui tao ci jie dian xing neng de gong suo 。zhu yao jie lun you :1、Cd1-xCu3+x+2yTi4-yO12(-7≤x≤0.07,-1.333≤y≤2.91)ya gu xiang tu de jian li ji Cude pian xi dui CdCu3Ti4O12jie dian xing neng de ying xiang 。li yong gu xiang fan ying fa ge cheng ji lie Cd1-xCu3+x+2y+x+2y Ti4-yO12(-7≤x≤0.07,-1.333≤y≤2.91)tao ci yang pin ,jian li le ya gu xiang tu 。jie guo xian shi zai CdTiO3he CuOde xiang zhi jian cun zai zhao CdTiO3de liu fang he zheng jiao xiang de gong cun xian xiang 。jin yi bu dui deng Cuxiang (CdCu3Ti4O12)、fu Cuxiang (Cd0.930Cu3.070Ti4O12)he pin Cuxiang (Cd1.137Cu2.863Ti4O12)tao ci jin hang yan jiu ,tan tao le Cude jia tai he pian xi dui ta men jie dian xing neng de ying xiang 。Xshe xian guang dian zi neng pu (XPS)he gao neng Xshe xian xi shou jin bian jie gou fen xi (XANES)xian shi ,zai tao ci nei bu de jing li zhong ,zai liu zi tiao yue de zai ti shi Cu3+li zi er bu shi yi qian bao dao de Cu+。2、Ti1-xCu2x-2.5yTayO2(0.05≤x≤1,0≤y≤0.667)san yuan ti ji de ya gu xiang tu he chan gu rong ti Ti1-x(Cu0.333Ta0.667)xO2(0<x≤0.465)tao ci zhong dian zi de ji hua hang wei yan jiu 。ge cheng le 49ge yang pin ,jian li le Ti1-xCu2x-2.5yx-2.5y TayO2(0.05≤x≤1,0≤y≤0.667)san yuan ti ji de ya gu xiang tu 。dui bu tong can za liang (x=0%、5%、18%、33%he 45%)de Ti1-x(Cu0.333Ta0.667)xO2yang pin de wei guan jie gou ,yuan su jia tai he jie dian xing neng yan jiu fa xian ,zai gai ji lie jie dian tao ci zhong cun zai zhao bao gua zi you zai liu zi lin jin tiao yue ji hua ,nei bu zu dang ceng dian rong xiao ying he biao mian zu dang ceng dian rong xiao ying deng duo chong ji hua ji zhi 。ji hua ji zhi zhi jian de zhuai bian he gong cun ying xiang zhao yang pin de jie dian xing neng 。3、bu tong shao jie tiao jian xia zhi bei de Ti1-x(Cu0.333Ta0.667)xO2(x=5%、20%he 45%)tao ci de jie mian zu cheng 、ji hua hang wei he jie dian xing neng yan jiu 。tong guo diao zheng shao jie wen du he shi jian ge cheng le Ti1-x(Cu0.333Ta0.667)xO2(x=5%,20%he 45%)ji lie tao ci 。chu le 1300oCshao jie 10 hde dao de Ti0.55(Cu0.333Ta0.667)0.45O2yang pin zhong han you shao liang de za xiang wai ,ji ta yang pin jun wei chun de jin gong dan jie gou 。wei jie gou 、jia tai 、jie mian yuan su fen bu yi ji jie dian xing zhi ce shi xian shi ,di can za (x=5%)tao ci ,jing jie chu de fei ju yu zai liu zi chuan dao ji zhi wei Motttiao yue chuan dao ,er dui yu gao can za tao ci (x=20%he 45%)ze zun xun Arrheniusjin lin tiao yue chuan dao 。sui zhao shao jie wen du he shao jie shi jian de di gao ,jing li che cun de zeng da jiang zeng jiang (Cu+Ta)gong can za jin gong dan tao ci de biao mian zu dang ceng dian rong xiao ying (surface barrier layer capacitor effect,SBLC),jin er dao zhi jie dian chang shu sheng gao 。tong shi ,you yu jing jie chu tong de pian xi er yin qi de fu tong xiang huo fu tan xiang de xi chu ,jiang jin yi bu cu jin jing li de sheng chang 。jie mian cheng fen de bian hua ye hui yin qi jing jie xiao ying (internal barrier layer capacitor effect,IBLC)。zai gao shao jie wen du (1300 oC)xia ,zhi bei de Ti0.8(Cu0.333Ta0.667)0.2O2tao ci biao xian chu hen gao de jie dian chang shu (ε’=65314)。zhe ge ju jie dian chang shu ying gui yin yu tao ci nei bu SBLChe IBLCji hua ji zhi de lian ge zuo yong 。yin ci ,hong guan shao jie tiao jian (wen du he shi jian )ke yi kong zhi wei guan jie mian xing neng ,cong er you fa xiang ying de ji hua ji zhi ,jin er dao zhi jin gong dan ji tao ci de jie dian xing neng bu tong 。4、XCu3Ti4O12(X=Na1/2Nd1/2、Na1/2Sm1/2、Na1/2Gd1/2he Na2/3Ce1/3)tao ci de jie dian xing zhi yan jiu 。ge cheng le XCu3Ti4O12(X=Na1/2Nd1/2、Na1/2Sm1/2、Na1/2Gd1/2he Na2/3Ce1/3)ji lie tao ci 。jie gou ce shi biao ming suo you de yang pin jun wei chan xiang ti xin li fang gai tai kuang jie gou 。shuang yang li zi ti dai dui XCu3Ti4O12tao ci jing li de dao dian xing ying xiang hen da 。Na1/2Nd1/2Cu3Ti4O12tao ci jing li de dao dian lv yao yuan da yu Na2/3Ce1/3Cu3Ti4O12tao ci 。dang shao jie wen du gao da 1000oCshi ,Na1/2Nd1/2Cu3Ti4O12tao ci biao xian chu liang hao de jie dian xing neng :zai kuan de pin lv fan wei nei (10-105Hz),tao ci ju you jiao gao de jie dian chang shu (?104)he di de jie dian sun hao (?0.01)。

论文参考文献

  • [1].基于Cu基载氧体的化学链燃烧技术[D]. 郑晓明.北京科技大学2015
  • [2].Cu改性钛基光催化剂及光解甘油产氢性能和机理研究[D]. 张萌.浙江大学2016
  • [3].碳基/过渡金属(Co、Cu)氧还原催化剂的制备及其电化学性能研究[D]. 白佛.吉林大学2016
  • [4].p型Cu(In,Ga)S2及Cu2ZnSnS4光阴极的溶液法制备及其太阳能分解水性能研究[D]. 关中杰.南京大学2016
  • 读者推荐
  • [1].钛酸钡基聚合物复合材料的可控制备与介电性能研究[D]. 蒋永昶.浙江大学2019
  • [2].双掺杂Ba(Sr)TiO3陶瓷的极化机制与介电弛豫研究[D]. 刘军伟.吉林大学2019
  • [3].低介电常数微波陶瓷材料的制备、介电性能及机理研究[D]. 江婵.华南理工大学2012
  • [4].钛酸铜钙型陶瓷的高介电物性和两类钙钛矿型无铅陶瓷的介电频谱的研究[D]. 郝文涛.山东大学2012
  • [5].钙钛矿型无铅铁电陶瓷的介电与压电性能研究[D]. 刘成.陕西师范大学2013
  • [6].钛酸钡基陶瓷的压电物性与钛酸铜钙陶瓷的高介电物性[D]. 郑鹏.山东大学2010
  • [7].BaTiO3陶瓷晶粒结构及尺寸效应的理论研究[D]. 方焯.华中科技大学2010
  • [8].复合钙钛矿微波介质陶瓷的结构与性能[D]. 傅茂森.浙江大学2009
  • [9].CaCu3Ti4O12的巨介电性质研究[D]. 冯丽欣.浙江大学2006
  • [10].Ca基复合钙钛矿微波介质陶瓷介电机理研究[D]. 沈杰.武汉理工大学2009
  • 论文详细介绍

    论文作者分别是来自吉林大学的袁龙飞,发表于刊物吉林大学2019-06-25论文,是一篇关于三元相图论文,极化机制论文,偏析论文,界面组分论文,吉林大学2019-06-25论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自吉林大学2019-06-25论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。

    标签:;  ;  ;  ;  ;  

    袁龙飞:三元巨介电陶瓷XO-CuO-TiO2(XO=CdO,TaO2.5)的制备及Cu偏析对介电性能的影响论文
    下载Doc文档

    猜你喜欢