高陆璐:Cu-Sn-Bi阴极电催化还原硝酸盐实验研究论文

高陆璐:Cu-Sn-Bi阴极电催化还原硝酸盐实验研究论文

本文主要研究内容

作者高陆璐(2019)在《Cu-Sn-Bi阴极电催化还原硝酸盐实验研究》一文中研究指出:现代工农业的快速发展,使得地下水体中硝酸盐的污染日益严重,地下水作为重要的饮用水源,给人类健康带来极大危害。电催化工艺作为环境友好型技术受到研究者广泛关注,然而大多数电极为贵金属材料价格昂贵,使其实际应用受到限制,因此开发一种高效、低成本的电极材料是当前的研究重点。多金属电极由于其元素之间相互协同可促进硝酸盐还原反应,在硝酸盐处理方面具有较好的应用前景。本实验研究采用电沉积法制备Cu-Sn-Bi电极,主要研究内容包括:(1)优化电极制备条件,考察电沉积时间、电沉积电流密度、电沉积温度和Bi含量等条件对Cu-Sn-Bi电极性能的影响,确定最佳电极制备条件,获得最佳电极。(2)以最佳电极作为电催化阴极对硝酸盐模拟废水进行降解,探究电催化还原硝酸盐影响因素,确定最佳处理条件。(3)通过循环伏安、线性伏安等测试手段,结合硝酸盐的电催化还原结果初步分析Cu-Sn-Bi电极还原硝酸盐的还原电位及还原路径。通过以上实验研究结果进行分析讨论,得到以下结论:(1)电沉积时间、电流密度、温度及Bi含量等制备条件对Cu-Sn-Bi电极性能的影响较为明显。在温度35℃,电流密度4 mA/cm2条件下电沉积30 min获得的Cu-Sn-Bi电极电催化还原硝酸盐效果较好。Bi含量为9%的Cu-Sn-Bi电极结晶度高,响应电流随时间衰减缓慢,电化学稳定性好,电极表面颗粒尺寸细小,表面积较大,活性位点较多,电催化还原硝酸盐去除效果最好,催化活性高。(2)以制备的Cu-Sn-Bi电极为阴极,钌铱电极为阳极,硝酸盐模拟废水在有效电极面积为40 cm2,电极间距为20 mm,硝酸盐氮初始浓度为100 mg/L,Na2SO4浓度为0.125 mol/L,电流密度为6 mA/cm2,初始pH值为7的条件下,电催化还原处理5 h后硝酸盐氮的去除率达88.43%,氮气选择率为56.20%,电流效率为28.21%,能耗为0.15KWh/g(NO3--N),当投加Cl-浓度为0.5 g/L时,氮气选择性为75.32%。(3)电化学分析结果表明,Cu-Sn-Bi三金属电极在-1.7 V左右发生析氢反应,硝酸盐的还原反应在析氢反应之前发生,电位为-0.7 V左右,NO3-吸附在阴极表面并还原为NO2-,然后在-1.5 V左右进一步还原为其他产物。硝酸盐的电催化还原反应符合一级动力学方程,硝酸盐的还原反应是分步进行的,其主要过程为NO3-→NO2-→N2→NH4+。

Abstract

xian dai gong nong ye de kuai su fa zhan ,shi de de xia shui ti zhong xiao suan yan de wu ran ri yi yan chong ,de xia shui zuo wei chong yao de yin yong shui yuan ,gei ren lei jian kang dai lai ji da wei hai 。dian cui hua gong yi zuo wei huan jing you hao xing ji shu shou dao yan jiu zhe an fan guan zhu ,ran er da duo shu dian ji wei gui jin shu cai liao jia ge ang gui ,shi ji shi ji ying yong shou dao xian zhi ,yin ci kai fa yi chong gao xiao 、di cheng ben de dian ji cai liao shi dang qian de yan jiu chong dian 。duo jin shu dian ji you yu ji yuan su zhi jian xiang hu xie tong ke cu jin xiao suan yan hai yuan fan ying ,zai xiao suan yan chu li fang mian ju you jiao hao de ying yong qian jing 。ben shi yan yan jiu cai yong dian chen ji fa zhi bei Cu-Sn-Bidian ji ,zhu yao yan jiu nei rong bao gua :(1)you hua dian ji zhi bei tiao jian ,kao cha dian chen ji shi jian 、dian chen ji dian liu mi du 、dian chen ji wen du he Bihan liang deng tiao jian dui Cu-Sn-Bidian ji xing neng de ying xiang ,que ding zui jia dian ji zhi bei tiao jian ,huo de zui jia dian ji 。(2)yi zui jia dian ji zuo wei dian cui hua yin ji dui xiao suan yan mo ni fei shui jin hang jiang jie ,tan jiu dian cui hua hai yuan xiao suan yan ying xiang yin su ,que ding zui jia chu li tiao jian 。(3)tong guo xun huan fu an 、xian xing fu an deng ce shi shou duan ,jie ge xiao suan yan de dian cui hua hai yuan jie guo chu bu fen xi Cu-Sn-Bidian ji hai yuan xiao suan yan de hai yuan dian wei ji hai yuan lu jing 。tong guo yi shang shi yan yan jiu jie guo jin hang fen xi tao lun ,de dao yi xia jie lun :(1)dian chen ji shi jian 、dian liu mi du 、wen du ji Bihan liang deng zhi bei tiao jian dui Cu-Sn-Bidian ji xing neng de ying xiang jiao wei ming xian 。zai wen du 35℃,dian liu mi du 4 mA/cm2tiao jian xia dian chen ji 30 minhuo de de Cu-Sn-Bidian ji dian cui hua hai yuan xiao suan yan xiao guo jiao hao 。Bihan liang wei 9%de Cu-Sn-Bidian ji jie jing du gao ,xiang ying dian liu sui shi jian cui jian huan man ,dian hua xue wen ding xing hao ,dian ji biao mian ke li che cun xi xiao ,biao mian ji jiao da ,huo xing wei dian jiao duo ,dian cui hua hai yuan xiao suan yan qu chu xiao guo zui hao ,cui hua huo xing gao 。(2)yi zhi bei de Cu-Sn-Bidian ji wei yin ji ,liao yi dian ji wei yang ji ,xiao suan yan mo ni fei shui zai you xiao dian ji mian ji wei 40 cm2,dian ji jian ju wei 20 mm,xiao suan yan dan chu shi nong du wei 100 mg/L,Na2SO4nong du wei 0.125 mol/L,dian liu mi du wei 6 mA/cm2,chu shi pHzhi wei 7de tiao jian xia ,dian cui hua hai yuan chu li 5 hhou xiao suan yan dan de qu chu lv da 88.43%,dan qi shua ze lv wei 56.20%,dian liu xiao lv wei 28.21%,neng hao wei 0.15KWh/g(NO3--N),dang tou jia Cl-nong du wei 0.5 g/Lshi ,dan qi shua ze xing wei 75.32%。(3)dian hua xue fen xi jie guo biao ming ,Cu-Sn-Bisan jin shu dian ji zai -1.7 Vzuo you fa sheng xi qing fan ying ,xiao suan yan de hai yuan fan ying zai xi qing fan ying zhi qian fa sheng ,dian wei wei -0.7 Vzuo you ,NO3-xi fu zai yin ji biao mian bing hai yuan wei NO2-,ran hou zai -1.5 Vzuo you jin yi bu hai yuan wei ji ta chan wu 。xiao suan yan de dian cui hua hai yuan fan ying fu ge yi ji dong li xue fang cheng ,xiao suan yan de hai yuan fan ying shi fen bu jin hang de ,ji zhu yao guo cheng wei NO3-→NO2-→N2→NH4+。

论文参考文献

  • [1].氧化锡基催化剂光电催化还原二氧化碳[D]. 胡风云.山东农业大学2019
  • [2].Fe2O3复合材料光电催化还原CO2[D]. 孟琨展.山东农业大学2019
  • [3].碳/金属纳米复合材料的电催化还原二氧化碳性能的研究[D]. 赵思琪.苏州大学2018
  • [4].Cu2O基复合材料的制备及其光电催化还原CO2的研究[D]. 李艺飞.华中师范大学2019
  • [5].金属酞菁纳米材料的合成及其电催化还原二氧化碳性能的研究[D]. 白小花.温州大学2019
  • [6].电催化还原CO2催化剂的设计合成及性能研究[D]. 陆培龙.中国科学院大学(中国科学院过程工程研究所)2019
  • [7].电催化还原处理模拟核电厂含碘甲烷放射性废液研究[D]. 黄立.华东理工大学2019
  • [8].协调催化剂与吸附物电子结构用于高效二氧化碳电催化还原[D]. 杜旭涛.中国科学技术大学2019
  • [9].Mn/Ru配合物催化还原CO2的理论研究[D]. 王晓俐.山东师范大学2019
  • [10].电催化-电絮凝技术高效处理船舶生活污水的效能研究[D]. 王永祺.哈尔滨工程大学2019
  • 读者推荐
  • [1].海绵铁-活性炭组合PRB技术去除地下水中硝酸盐实验研究[D]. 柯钰.江西理工大学2019
  • [2].电调控零价铁复合材料强化还原NO3-的性能与机理[D]. 刘振威.南京大学2019
  • [3].电化学方法去除水中硝酸根离子的研究[D]. 施翼杰.浙江工业大学2019
  • [4].掺杂LiNbO3催化剂的制备及其光催化还原硝酸盐的研究[D]. 李胜男.哈尔滨工程大学2019
  • [5].电催化-电絮凝技术高效处理船舶生活污水的效能研究[D]. 王永祺.哈尔滨工程大学2019
  • [6].还原性铁粉处理低浓度硝酸盐废水的研究[D]. 赵爽.华南理工大学2018
  • [7].包埋纳米零价铁修复地下水中硝酸盐氮及铬污染[D]. 马溶涵.沈阳大学2018
  • [8].Me/GO/Ti阴极的制备及电催化还原硝酸盐氮的研究[D]. 王思.陕西科技大学2018
  • [9].电催化还原去除废水中硝酸盐氮的研究[D]. 李弯.南京航空航天大学2017
  • [10].电催化反硝化去除水中硝酸盐实验研究[D]. 李丹.沈阳工业大学2017
  • 论文详细介绍

    论文作者分别是来自沈阳工业大学的高陆璐,发表于刊物沈阳工业大学2019-07-11论文,是一篇关于电催化论文,还原论文,电极论文,硝酸盐论文,沈阳工业大学2019-07-11论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自沈阳工业大学2019-07-11论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。

    标签:;  ;  ;  ;  ;  

    高陆璐:Cu-Sn-Bi阴极电催化还原硝酸盐实验研究论文
    下载Doc文档

    猜你喜欢