导读:本文包含了多层激励函数论文开题报告文献综述及选题提纲参考文献,主要关键词:入侵检测,量子神经网络,多层激励函数
多层激励函数论文文献综述
冯建利,拱长青[1](2010)在《基于多层激励函数量子神经网络的入侵检测研究》一文中研究指出为解决传统入侵检测模型所存在的检测效率低,对未知的入侵行为检测困难等问题,对神经网路隐层激励函数进行了研究,利用多层激励函数的量子神经网络模型进行入侵检测,该量子神经网络借鉴量子理论中量子态迭加的思想,使得隐层神经元能表示更多地状态或量级,从而很好的对入侵类型进行分类,增加隐层神经元的处理速度和检测性能法。实验表明,迭加的每个sigmoid函数较传统的sigmoid函数不仅对已知的入侵具有较好的识别能力,而且能较好的识别未知入侵行为,从而实现入侵检测的智能化。(本文来源于《沈阳航空工业学院学报》期刊2010年01期)
吴茹石,朱大奇,彭力[2](2007)在《基于多层激励函数量子神经网络的字符识别算法》一文中研究指出针对不同样本之间存在交叉数据的模式识别问题,将多层激励函数的量子神经网络引入模式识别之中,提出一种基于量子神经网络的模式识别算法。量子神经网络是将神经元与模糊理论相结合的模糊神经系统,由于自身固有的模糊性,它能将决策的不确定性数据合理地分配到各模式中,从而减少模式识别的不确定度,提高模式识别的准确性。本文以英文字母为例,应用量子神经网络模型进行字符识别,通过比较发现量子神经网络除了可以克服BP网络的诸多缺点外,对具有不确定性、两类模式之间存在交叉数据的模式识别问题,有极好的分类效果。仿真结果证明该方法的正确性和有效性。(本文来源于《数据采集与处理》期刊2007年04期)
多层激励函数论文开题报告
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
针对不同样本之间存在交叉数据的模式识别问题,将多层激励函数的量子神经网络引入模式识别之中,提出一种基于量子神经网络的模式识别算法。量子神经网络是将神经元与模糊理论相结合的模糊神经系统,由于自身固有的模糊性,它能将决策的不确定性数据合理地分配到各模式中,从而减少模式识别的不确定度,提高模式识别的准确性。本文以英文字母为例,应用量子神经网络模型进行字符识别,通过比较发现量子神经网络除了可以克服BP网络的诸多缺点外,对具有不确定性、两类模式之间存在交叉数据的模式识别问题,有极好的分类效果。仿真结果证明该方法的正确性和有效性。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
多层激励函数论文参考文献
[1].冯建利,拱长青.基于多层激励函数量子神经网络的入侵检测研究[J].沈阳航空工业学院学报.2010
[2].吴茹石,朱大奇,彭力.基于多层激励函数量子神经网络的字符识别算法[J].数据采集与处理.2007