本文主要研究内容
作者(2019)在《11.2% Efficiency all-polymer solar cells with high open-circuit voltage》一文中研究指出:Herein,we fabricated all-polymer solar cells(all-PSCs)based on a fluorinated wide-bandgap p-type conjugated polymer PM6 as the donor,and a narrow bandgap n-type conjugated polymer PZ1 as the acceptor.In addition to the complementary absorption and matching energy levels,the optimized blend films possess high cystallinity,predominantly face-on stacking,and a suitable phase separated morphology.With this active layer,the devices exhibited a high Vocof 0.96 V,a superior Jscof 17.1 mA cm-2,a fine fill factor(FF)of 68.2%,and thus an excellent power conversion efficiency(PCE)of 11.2%,which is the highest value reported to date for single-junction all-PSCs.Furthermore,the devices showed good storage stability.After 80 d of storage in the N2-filled glovebox,the PCE still remained over 90%of the original value.Large-area devices(1.1 cm2)also demonstrated an outstanding performance with a PCE of 9.2%,among the highest values for the reported large-area all-PSCs.These results indicate that the PM6:PZ1 blend is a promising candidate for scale-up production of large area high-performance all-PSCs.
Abstract
Herein,we fabricated all-polymer solar cells(all-PSCs)based on a fluorinated wide-bandgap p-type conjugated polymer PM6 as the donor,and a narrow bandgap n-type conjugated polymer PZ1 as the acceptor.In addition to the complementary absorption and matching energy levels,the optimized blend films possess high cystallinity,predominantly face-on stacking,and a suitable phase separated morphology.With this active layer,the devices exhibited a high Vocof 0.96 V,a superior Jscof 17.1 mA cm-2,a fine fill factor(FF)of 68.2%,and thus an excellent power conversion efficiency(PCE)of 11.2%,which is the highest value reported to date for single-junction all-PSCs.Furthermore,the devices showed good storage stability.After 80 d of storage in the N2-filled glovebox,the PCE still remained over 90%of the original value.Large-area devices(1.1 cm2)also demonstrated an outstanding performance with a PCE of 9.2%,among the highest values for the reported large-area all-PSCs.These results indicate that the PM6:PZ1 blend is a promising candidate for scale-up production of large area high-performance all-PSCs.
论文参考文献
论文详细介绍
论文作者分别是来自Science China(Chemistry)的,发表于刊物Science China(Chemistry)2019年07期论文,是一篇关于,Science China(Chemistry)2019年07期论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自Science China(Chemistry)2019年07期论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。