一、当前实施积极的财政货币政策对西宁经济发展的作用(论文文献综述)
陶克涛,刘培,孙娜[1](2021)在《经济增长、人力资本与逆周期政策选择的动态效应》文中研究表明本文构建经济增长、人力资本与宏观经济政策互动关系的分析框架,探索经济增长的多重驱动机制,并构建VAR模型,使用1997—2018年宏观季度时间序列数据进行实证检验。研究结果表明:第一,经济增长与人力资本之间具有双向、动态的因果关系,人力资本有助于促进经济增长,同时经济增长也是人力资本提升的重要影响因素;第二,宏观经济政策存在短期和长期效应,从短期来看,财政政策和货币政策表现出明显的逆周期效应,积极的财政政策和宽松的货币政策能够拉动经济增长,从长期来看,偏紧的财政政策和稳健适度的货币政策能够通过提升人力资本强化经济增长的动力机制,进而促进经济发展。因而,新形势下要实现中国经济高质量均衡发展,不仅要依靠宏观经济政策,还应针对提升人力资本的痛点,把握宏观经济政策调整变化及相互叠加对城镇和农村人力资本的影响,提高政策的靶向性。
孙亚刚,徐静,魏春飞,朱宝芳,徐茜[2](2021)在《财政政策和货币政策协同效应研究——以青海省为例》文中认为本文通过梳理新冠肺炎疫情下出台的财政政策和货币政策,阐述分析财政政策和货币政策对经济增长的作用机理,结合青海省相关指标数据,分析财政政策和货币政策协同施行对青海省经济增长的促进作用。提出疫情防控常态化背景下,进一步增强青海省财政政策和货币政策协同效应的建议。
王薇[3](2021)在《我国信贷供给传导机制及其宏观经济效应研究》文中认为2008年全球性金融危机的爆发证明了居于主导地位的实际经济周期理论(RBC)存在显着缺陷。传统的货币经济理论和新凯恩斯主义均侧重于对利率和汇率等宏观经济变量的调控,往往忽视了银行信贷因素对实体经济发展及经济波动的影响。党的十九大要求我国金融体系建设应服务于实体经济,同时防范化解重大金融风险,推动我国经济转型和高质量增长。一方面尽力发挥金融市场的资源配置功能,另一方面最大程度地降低金融市场波动对宏观经济产生的负面影响。基于此背景,本文在推导信贷供给对宏观经济的微观影响机制的基础上,进一步从总量调控、结构优化、价格传导、风险累积四个维度展开实证分析,最后从宏观经济政策视角探究了信贷监管政策对货币政策调控“经济增长、物价稳定和金融稳定”三大目标有效性的异质性影响。本文的主要研究结论如下:首先,本文基于动态随机一般均衡模型从微观视角探究了信贷供给波动对宏观经济影响的传导机制,发现信贷供给增加能够短期内带动投资水平迅速上升并促进资本存量的长期积累,信贷供给对投资存在扩张性影响,但会对消费形成挤出效应,使得短期内经济增长主要依靠投资驱动,在长期主要依靠消费拉动。在理论分析的基础上,本文进一步应用基于GAS过程的时变转移概率马尔科夫区制转移回归(MS-GAS-TVTP)模型对我国信贷供给波动和产出波动进行阶段性变迁识别和时变转移分析发现,在经济衰退初期,信贷供给波动表现出强烈的“顺周期”特征,经济环境恶化会在短期内导致信贷紧缩,但随着信贷扩张政策的逐步实施,信贷供给对产出的引导效应逐渐显现。基于时变协整模型对信贷供给与产出的动态联动关系进行检验发现,我国信贷供给与产出之间同向动态联动,信贷扩张能够带动我国经济增长,信贷收缩会进一步加剧经济的衰退程度,信贷供给对产出的时变影响系数在长期基本趋于稳定,二者趋于长期均衡。其次,考虑到商业银行的信贷扩张和收缩对宏观经济可能存在非对称影响效应,本文进一步从产出增长和物价稳定的角度出发应用非线性自回归分布滞后(NARDL)模型展开探究。研究发现,在经济衰退期,可以通过扩张信贷的方式增强企业投资积极性、促进实体经济恢复平稳增长;在经济扩张期,信贷扩张对产出的带动效果会随着产出总量的不断积累而逐渐减弱,并加剧通货膨胀;信贷收缩虽然能够降低通货膨胀水平,但无法完全抵消信贷扩张带来的通胀风险,并且会对经济增速产生强烈的负面影响。在此基础上,本文进一步从期限结构视角应用SV-TVP-FAVAR模型探究了推动我国产出增长和通货膨胀水平上升的信贷供给根源。研究发现,我国中长期信贷供给增加虽然能够显着拉动我国经济增长,但同时对通货膨胀也具有强烈的促进作用,非金融企业中长期信贷供给在促进经济增长方面未能占据优势;相较于中长期信贷,我国短期信贷供给在促进经济增长方面不具优势,我国短期住户消费信贷供给增加对经济增长存在逐渐减弱的负向影响,并且不会引起强烈的通货膨胀效应,证实了扩大内需是推动我国经济增长、降低通货膨胀损失的可行路径之一。随后,本文进一步基于价格传导视角运用贝叶斯估计的平滑迁移向量自回归(ST-BVAR)模型分析了不同经济状态下信贷价格波动对宏观经济的影响效应,并探讨不同时期我国信贷价格政策的有效性。结果发现,在经济衰退期,信贷价格下调能够引导第二、三产业投资和消费增加,进而从需求侧驱动经济增长,信贷价格政策的传导渠道基本畅通,政策基本有效。在经济扩张期,我国利率市场化尚不完全且居民储蓄率水平相对较高,存在“金融抑制”和“消费抑制”双重抑制现象,因此我国信贷价格下调仅能通过促进第三产业投资的方式对经济增长产生正向影响,第二产业投资和消费的传导渠道均存在梗阻,极大地降低了信贷价格调控政策的有效性。接下来,本文进一步基于风险累积视角运用多元方向分位数向量自回归(MDQVAR)模型分析了信贷风险累积对我国宏观经济及信贷调控有效性的影响效应。研究发现,信贷风险累积在不同经济状态下对产出、通货膨胀和金融稳定均呈现出抑制效应,但影响强度随经济下行程度加深逐渐增强,并且信贷风险累积对金融稳定的负面影响最为强烈。信贷供给对产出、通货膨胀和金融稳定的影响效应在不同信贷风险累积程度下表现出显着的异质性。当以“经济增长”作为主要的经济目标时,信贷风险累积水平应当控制在一定范围内,既不能为了追求低不良水平过分惜贷,也不能为了投资扩张过度放贷。当以“稳定物价、促进货币流通”和“金融稳定”为主要目标时,应全力避免过度放贷和过度负债,同时加强贷款发放前后的审慎监管,尽量减少非理性的竞争行为和代际遗忘,尽可能降低银行资产中的不良资产规模,并加快不良资产的处置流程。最后,本文基于宏观经济政策视角运用多元方向分位数向量自回归(MDQVAR)模型探究了信贷监管政策对货币政策调控“经济增长、物价稳定和金融稳定”三大目标有效性的异质性影响,为更好地完善“双支柱”框架提供参考。研究发现,在经济下行期,流动性类的信贷监管政策能够显着增强数量型货币政策对经济增长的调控效果,但会形成通货膨胀问题,因此,需要在“促增长”和“稳通胀”目标中进行取舍。在经济平稳期,价值类的信贷监管政策虽然会在一定程度上削弱数量型货币政策对经济增长的促进效果,但信贷监管政策的动态调整不会对数量型货币政策有效性产生显着影响,二者可以各自调控,能够同时实现“稳增长、稳通胀、稳金融”三大目标。在经济过热期,价值类的信贷监管政策与价格型货币政策存在“政策冲突”,二者难以在动态调控中同时实现“金融稳定”与“价格稳定”。流动性类的信贷监管政策能够增强价格型货币政策对通货膨胀的抑制效果,两政策配合能够同时实现“稳金融、降通胀”的目标,并且在一定程度上“保增长”,是经济过热期最优的政策协调模式。除此之外,货币政策在金融稳定目标的调控上不具优势,维持金融市场稳定还是应以信贷监管政策为主。
李成,丁顺文,李一帆[4](2021)在《财政政策与货币政策的动态调控效应——基于时变参数向量自回归模型的检验》文中进行了进一步梳理本文廓清了财政政策与货币政策搭配动态调控宏观经济的机理,揭示了两者协调影响经济的"黑箱"机制及其在经济不同阶段的搭配方式;运用中国2004—2019年的经济季度数据,构建TVP-SV-VAR模型探究两类政策对宏观经济的调控效应。研究发现:财政政策与货币政策共同把控流动性"闸门"实现互动协调;财政政策搭配货币政策具有时变性,在整体上"同向发力"推动经济发展;两类政策对产出的影响并非始终如理论一致,在结构层面仍有优化靶向性操作的余地。
井西宁[5](2021)在《我国东西部地区水利投资结构变化研究 ——基于江苏与陕西两省的数据对比》文中进行了进一步梳理水利建设事关经济社会发展全局,是人口、资源、环境与经济社会协调发展的重要保障。水利建设投资作为水利事业发展的控制性要素,对水利建设的方向及成效起到了重要作用。“十一五”以来,中央对水利基础设施的投资力度逐年加大,水利投资主体、流向也呈现出多元化的特点,合理有效的水利投资结构及投资策略已逐渐成为水利发展研究的热点。本文分别选取东部地区的江苏省与西部地区的陕西省作为研究对象,采用数据统计、改进TOPSIS法、VAR模型、脉冲响应函数等方法对2005-2018年我国东西部地区水利投资结构变化情况进行深入研究。主要成果如下:(1)从水利政策、水资源情况、水利资金总量、投资来源、投资用途等多个角度,梳理总结了江苏与陕西两省水利投资结构的变化规律和发展趋势,发现两省水利投资规模均逐渐扩大,财政是两省水利资金来源的主要渠道,防洪和供水工程是水利资金的主要支出项。不同的是江苏省计划、到位、完成投资总额较大,陕西省资金到位及完成率较高,且江苏省变化幅度最明显的是地方投资,陕西省为中央投资和国内贷款。(2)采用改进的TOPSIS法对江苏与陕西两省来源结构、用途结构变化的合理度进行测算分析,发现两省来源结构合理度变化经过小幅波动、剧烈波动和结构稳定后趋于合理,且合理度大小维持在50%以上,两省用途结构合理度变化经过缓慢增长、快速增长和稳定增长后趋于科学、有效,逐渐保持在70%以上的较高水平,但两省仍在水利投资结构合理度的波动大小、增长速度、优先进入结构稳定阶段的时间上有所区别。(3)运用VAR模型、脉冲响应函数研究了江苏与陕西两省经济发展水平、产业结构升级、资源配置优化对水利投资结构变化的影响。结果表明各因素的正向变化对水利投资结构优化均有促进作用,经济发展的促进作用最大,资源配置优化次之,产业结构升级促进作用最小,且各因素对两省水利投资结构优化的作用程度及影响趋势在各阶段尚存在一定的差异。最后,结合分析结果提出了优化我国东西部地区水利投资结构的对策及建议。本文通过选取我国东西部地区典型代表省份,研究两省2005-2018年水利投资结构的变化特征、区域差异、发展趋势,对提高水利投资利用效率,优化我国东西部地区水利投资结构,进一步促进区域经济社会可持续发展具有重要意义。
林思涵[6](2021)在《我国资产价格泡沫的形成机理与传染效应研究》文中认为近几十年来,世界上的许多国家都经历了资产价格泡沫的膨胀与破灭,以及随之而来的经济衰退。如日本的泡沫经济、美国的互联网泡沫以及2008年的全球性金融危机等等,无一不伴随着大规模的资产价格泡沫崩溃。这些事件让理论研究与实务工作者不断意识到关于资产价格泡沫潜在风险研究的重要性。当前,我国虽尚未发生大规模的泡沫崩溃事件,但是资产价格频繁波动以及资产价格的泡沫化迹象对我国经济运行的潜在威胁也十分显着。如我国的房地产市场在1998年住房改革之后,已经经历了长达二十年的普遍上涨。如今,房地产市场被我国央行视作我国经济发展中最大的“灰犀牛”。而我国的股票市场在经历了2015年异常波动后,由资产价格泡沫化导致的严重的资金空转现象以及资本配置不当,已使得我国资本市场服务于实体经济的有效性显着下降。现如今,在新型冠状病毒肺炎危机影响下,出于经济救助的目的,全球央行“大放水”已造成了全球流动性的泛滥,而过于充足的流动性很可能会进一步滋生新的资产价格泡沫。基于此,本文立足于我国资产市场现状,以资产价格泡沫作为研究对象,采用理论分析与实证分析相结合的研究范式,基于“识别、测度→形成机理→影响效应→政策治理”这一研究脉络,对资产价格泡沫的识别测度、形成机理、传染效应以及政策治理展开系统研究,这不仅对理解我国资产价格泡沫的运行机制具有显着意义,也对我国守住不发生系统性金融风险的政策要求十分重要。第1章,重点对资产价格泡沫的识别与测度、形成机理、传染效应以及政策效应进行了文献梳理,并给出了本文的研究框架。第2章,介绍了资产价格泡沫的内涵与形成过程,以及理性资产价格泡沫与非理性资产价格泡沫的理论基础。其中,关于理性资产价格泡沫的部分,本章又介绍了内生性、外生性资产价格泡沫的理论界定;关于非理性资产价格泡沫,重点介绍了以异质信念与有限套利为诱发因素的非理性资产价格泡沫的形成机理以及噪声交易理论与泡沫乘骑理论。第3章,基于PSY识别程序对我国股票市场与主要市域房地产价格泡沫进行识别。首先,本章介绍了PSY识别方法的检验原理与递归算法,而后对我国主要资产市场的资产价格泡沫进行了识别。研究发现,在样本区间内,我国股票市场与房地产市场均经历了频繁的泡沫过程,如我国上交所、深交所以及创业板股票市场均识别到完整的泡沫区间,仅中小板市场未识别出明显的泡沫区间。主要泡沫区间为2007年4月至10月、2015年3月至6月。在市级城市的房价泡沫识别中,样本城市普遍经历了不同频次的泡沫周期,时间集中于2016年6月至2017年8月。在泡沫韧性方面,股票市场中上交所市场的泡沫韧性强于深交所,房地产市场中一线城市强于新一线城市,新一线城市强于二线城市和三线城市。韧性较高的资产市场其泡沫持续期长,资产价格泡沫不易破灭。第4章,重点研究了信贷政策对房地产价格泡沫形成过程中的作用机理。首先,本章在理论上论证了资产价格泡沫与金融杠杆之间的定价关系,得出在违约概率大于零的前提下,金融杠杆的存在会导致正向资产价格泡沫的出现。而后为验证上述理论结果,本文采用NARDL模型实证分析了分部门宏观杠杆率对我国房地产价格泡沫的长、短期非对称影响。实证结果表明,首先,实体经济部门以及金融部门杠杆率的负向调整均会长期有效抑制房地产价格泡沫的持续膨胀,但一刀切的实体经济部门去杠杆不利于房地产市场的长期稳定运行。其次,长期内可采用非金融企业部门向居民部门的杠杆转移,来实现对房地产价格泡沫的温和平抑作用。最后,应有效、合理地发挥中央政府杠杆的前瞻性指引作用,政策当局不应对地方政府施行强效去杠杆政策,而应试图“熨平”地方政府债务波动以免引发局部房地产价格泡沫化风险。第5章,重点研究卖空约束下,投资者异质信念对股票价格泡沫形成的作用机理。首先,本章对卖空约束、投资者异质信念对股票价格泡沫的影响机理进行了深入的理论层面分析;在实证研究方面,本章构建了嵌入狄利克雷过程的无限区制马尔科夫转换向量自回归模型(RTV-VAR),以刻画变量间的时变因果关系。研究结果表明,上海主板市场融资融券交易机制更具加速风险释放的杠杆交易特征。该杠杆交易特征致使投资者情绪非对称表达,进而引致股票的错误定价。而深圳主板市场的融资融券交易则未体现较强的杠杆交易特征。在沪深主板股价泡沫活跃期间,投资者异质信念对融资融券的正向影响的上升表明投资者情绪借助融资融券工具得以表达的意愿变强,因此该正向影响的快速上升可作为股价异常波动的预警信号。第6章,重点分析了股票价格泡沫的传染效应。首先,本章根据PSY方法识别了我国股票市场分行业资产价格泡沫,并通过市盈率与BSADF统计量的趋势匹配方法,构造了资产价格泡沫规模的代理变量。而后采用带有时变波动率的时变向量自回归模型以及广义方差分解,构造了时变动态DY连通性指标,对2012年12月至2020年6月期间行业间的股票泡沫传染性进行测算。结果表明:首先,总体动态连通性指数捕捉到2012年以来我国资本市场发生的三次典型的泡沫事件,分别为2015年股市异常波动、2017-2018年上旬的债券市场大规模债务违约以及2018年以来的中美贸易摩擦。其次,行业间的泡沫传染在传染方向以及传染规模上均具有显着的时变特征。整体上工业、医药卫生以及信息技术行业资产价格泡沫溢出影响持续为正,表明该三个行业最具泡沫传染性,而能源、主要消费、金融地产以及公共事业行业则是泡沫风险的主要净接收行业,最具行业脆弱性。最后,两两行业间的净溢出动态连通性指数的测度结果表明,由于行业自身泡沫规模变化所产生的投资者情绪引导作用以及与其他行业业务关联性的变动导致行业间的泡沫传染具有显着的行业轮动特征。第7章,重点分析了我国股票价格泡沫和房地产价格泡沫的货币政策效应。首先,本章结合局部均衡框架下理性资产价格泡沫理论简要论证了利率的变化对基础价值成分和泡沫成分具有不同影响。而后在实证分析中采用TVP-VAR模型分析了以短期名义利率上升为代表的外生紧缩性货币政策冲击以及以货币供应量M2为代表的扩张性货币政策冲击对货币政策潜在目标变量的影响。最后,根据理论分析结果,通过脉冲响应函数构造了利率冲击对资产价格内在价值成分和泡沫成分的冲击影响。结果表明,外生紧缩性价格型货币政策冲击能够引起股票价格的短暂下跌,并且相比于基础价值成分的下跌,泡沫成分的上升更为显着。此外该货币政策还会引起房地产价格泡沫短期内呈现上升趋势,长期才呈现下降趋势。因此,利用紧缩性价格型政策治理资产价格泡沫时,不但无法达到有效抑制泡沫的作用,反而会损害股票的基础价值。而扩张性数量型货币政策会导致资产价格的显着上升,但其对股利变量的影响存在较大不确定性。此外,扩张型货币政策对房地产价格泡沫存在更为显着的政策滞后效应。因此,传统的“逆向操作”策略对资产价格泡沫的作用具有较大不确定性,甚至适得其反。
王国志[7](2021)在《经济不确定性、经济周期与货币政策有效性研究》文中指出在全面建设社会主义现代化国家向第二个百年奋斗目标迈进的历史新征程中,国内外政治经济环境发生了显着的变化,一个突出表现就是国内外经济不确定性事件频繁发生,导致我国经济周期运行的波动性加剧,货币政策调控难度加大,因此科学研判经济不确定性对经济周期和货币政策有效性的影响对于提升宏观调控有效性推动高质量发展具有理论和现实意义。本文遵循“文献梳理——理论分析——现状测度——实证研究——理论拓展”的总体研究框架,综合采用文献分析、理论梳理、指数测算、动态计量实证研究、DSGE理论模拟等方法对经济不确定性、经济周期与货币政策调控之间勾稽关系的规律性特征开展理论和实证研究。本文首先从理论层面梳理了经济不确定性概念的起源、界定及其度量,分析经济不确定性对经济周期影响的理论机制、经济不确定性对货币政策有效性影响的理论机制以及不同经济周期下货币政策调控的相关理论,奠定全文研究的理论基础。综合现有文献来看,可以将经济不确定性的基本概念界定为经济主体对未来的发生事件的无法预测性,衡量经济不确定性程度的方法主要包括运用现有的经济变量作为代理变量、运用专业人士对未来经济预测的分歧程度、运用现代信息技术和大数据合成指数法、运用大数据爬虫抓取报纸关键词方法、运用高维宏观数据提取共同因子的方法等5种方法,其中后两种方法被广泛使用。理论机制分析结果显示,经济不确定性对经济周期的影响机制主要包括投资期权机制、预防储蓄机制、金融摩擦机制、信息传递机制、长期投资机制、H-A传导机制等6个方面,经济不确定性冲击对经济周期和货币政策调控具有显着影响。不同经济周期理论下的货币政策调控理论也存在显着差异,催生了不同的货币政策规则。其次,本文测度了我国经济周期指数,分析了经济不确定性和经济周期之间的动态关联机制。结果显示,中国经济不确定性指数走高的时点大多与特定的经济政治事件相关联,1996年1月至2020年6月期间我国一共经历了3轮完整的经济周期,第四轮经济周期尚未结束。时变格兰杰因果关系检验结果显示,在经济不确定性较高时,经济不确定性对经济周期具有一定的预测性;在经济周期交替变化的时点,经济周期对经济不确定性具有一定的预测性。动态条件相关系数分析结果显示,经济不确定性与经济周期之间具有较为显着的负向动态条件相关性,在经济紧缩期经济不确定性波动剧烈,而在经济扩张期经济不确定性波动平稳。动态溢出指数分析结果显示,经济不确定性与经济周期之间存在显着的时变动态溢出效应,且经济周期波动加大了经济不确定性,经济不确定性同样加剧了经济周期波动。第三,本文构建了MS-AR模型将我国经济不确定性指数划分为三区制,在此基础上构建LT-TVP-VAR模型分析了货币政策在不同程度经济不确定性冲击时的反应及其调控效果,得出如下结论:(1)经济不确定性冲击对数量型和价格型货币政策存在正向时变冲击效应,但在经济不确定性的低、中、高区制下调控效果存在较大差异。(2)在经济不确定性处于低区制时数量型政策在调控产出缺口方面效果比较明显。当经济不确定性处于中高区制时价格型货币政策对产出缺口实施反周期调控的效果比较明显。(3)在经济不确定性处于低区制时数量型和价格型货币政策对通胀缺口调控效果较好,在中、高区制时数量型货币政策对通胀的调控存在局限性,而价格型货币政策对通胀缺口实施反周期调控效果更优。第四,本文构建TH-SVAR和SEIVAR模型实证分析了经济周期不同阶段货币政策调控的有效性和非对称性。基于TH-SVAR模型的研究结果显示,同一货币政策工具在相同经济周期阶段对产出和通胀的调控效应具有对称性,但不同货币政策工具在经济周期不同阶段下调控效果呈现出非对称特征。数量型和价格型货币政策在经济扩张期调控效应优于经济收缩期。经济扩张期价格型货币政策对产出调控效果优于数量型货币政策,数量型货币政策对通胀调控效果优于价格型货币政策。经济收缩期两种政策工具对产出与通胀的调控效果相对复杂。基于SEIVAR模型的研究结果表明,在经济周期不同阶段下货币政策对通胀和产出的调控效果存在显着差异和非对称特征。数量型货币政策对通胀调控更为有效,价格型货币政策对产出调控更为有效。数量型货币政策在经济收缩期对通胀和产出的调控效应优于经济扩张期。价格型货币政策在经济收缩期对通胀的调控效应更加符合政策预期。价格型货币政策对产出的调控在经济收缩期优于经济扩张期。最后,本文构建了包含预期因素和异质冲击的DSGE模型探讨了货币政策有效性问题,得出如下结论:(1)当模型中引入政策预期因素后可以与数据实现较好的拟合,且预期冲击形式的有效识别使得工具变量对目标变量波动的反应程度均出现了不同程度的变化。(2)通胀对利率工具调控较为敏感,数量工具调控对产出的影响作用相对较大,然而数量冲击下产出易出现逆向波动降低调控有效性。当对预期冲击和非预期冲击进行识别后,工具变量的预期冲击对目标变量波动的影响作用均有所增加,且目标变量收敛周期均有所缩短。(3)影响产出和通胀波动的占优冲击来源分别为数量政策和利率政策,对冲击来源结构的有效分解可以提升货币政策的有效性。根据以上研究结果和我国经济金融发展及货币政策调控实践,本文提出如下政策建议:(1)准确识别经济不确定性冲击,稳定经济政策预期,以政策确定性应对经济不确定性。(2)优化货币政策量价配合机制,强化政策工具间的组合协调。(3)加强对微观主体的预期管理和舆论引导,提升货币政策调控的有效性。
周贺[8](2021)在《中国产业集聚对区域房地产价格的影响研究》文中研究说明产业集聚作为既能够影响房地产市场需求又能够影响房地产市场供给的重要经济变量,与房地产价格上涨存在着紧密的理论关联。同时,产业集聚作为我国地区经济发展的典型化特征之一,代表了我国地区经济发展的未来趋势。因此,研究产业集聚对我国区域房地产价格的影响具有重要的学术价值和现实意义,包括为解释我国房地产价格上涨提供新视角与新证据,发现我国房地产价格的区域分化现象背后的原因,以及为不同城市结合实际开展房地产市场调控和制定产业政策提供有益参考。本文在界定人口集聚、房地产和房地产价格相关概念后,对国内外有关产业集聚对房地产价格影响的研究文献进行系统梳理;重视现实对我国房地产市场发展历程进行阶段性分析;运用经济理论分析产业集聚对房地产价格的影响,以及产业集聚影响房地产价格的作用机制和门限效应表现;选取合适经济变量,以中国35个大中城市数据为样本,应用静态面板数据模型、动态面板数据模型、中介效应检验模型和门限面板模型进行实证研究。本文获得主要研究结论如下:一是我国产业集聚表现出明显的区域差异和产业差异,房地产价格也表现出明显的区域差异。产业集聚在东中西三大地带间差异明显,除北京和海南外,东部地区的制造业产业区位熵指数明显大于1,中部地区和西部地区除了河南、安徽、内蒙古、陕西等省份表现较好外,包括东北老工业基地的其他省份制造业集聚水平均较低。与制造业不同,以开发建设为主导的中西部地区,建筑业普遍具有较高的集聚水平。而金融业因其强大的中心集聚力,导致金融业集聚不仅存在明显的东中西差异,也存在着明显的地带内省际差异,来源于第三产业的房地产业集聚表现出与金融业相似的特点,且其与地区的房地产市场冷热密切相关。根据各地商品房平均销售价格数据,对比发现我国东部地区房地产价格明显高于中部和西部地区,且东部省份的房地产价格分化严重,35个大中城市的土地成本数据也表现出了相似的特征。二是产业集聚对房地产价格具有显着的影响。理论上,产业集聚能够影响居民的房地产购买能力和数量,从而提升房地产的市场需求,同时产业集聚能够影响土地供给和房地产开发融资成本,从而影响房地产市场的供给。因此,产业集聚从供给和需求两个角度影响房地产价格。以35个大中城市数据为样本的动态面板数据模型估计结果显示,制造业和建筑业集聚对房地产集聚具有显着的正向影响,金融业和房地产业集聚影响不显着,这反映了以制造业和建筑业为代表的实体经济发展更能够长期影响房地产的价格水平,我国房地产价格水平的上涨是具有一定程度的实体经济支撑的。考虑到房地产价格对产业集聚的反向影响关系,对模型内生性进行讨论,并采用新的核心解释变量测量方法和变更样本时间跨度的方式再次进行估计,发现研究结论是稳健的。此外,工资收入、财富水平、建筑成本、土地成本均对房地产价格具有显着正向影响,房屋竣工面积对房地产价格具有显着的负向影响,与房地产价格的供需决定理论的预期结论相一致。三是人口集聚和土地成本是产业集聚影响房地产价格的重要机制变量。产业集聚与人口集聚是经济集聚理论成立的两大基础,经济因素是人口迁移流动的主要原因,产业集聚导致的区域经济发展差异推动了人口集聚的发生,人口的居住需求又刺激了房地产价格的上扬。产业集聚推动政府平衡工业用地与住宅土地供给,由于新增土地出让收入具有政府财政平衡和补贴工业用地基础设施建设的功能,这强化了政府提高土地价格的城市土地经营动机,进而推高了房地产成本和销售价格。中介效应检验结果显示人口集聚和土地成本能够部分的传导产业集聚对房地产价格的影响,人口集聚和土地成本是产业集聚作用于房地产价格的重要影响机制。四是产业集聚对房地产价格的影响具有明显的门限效应特征,符合边际效应递减规律。城市在自然条件、区位条件、产业结构等多个方面存在差异,城市异质性能够影响产业集聚对房地产价格的作用大小,即产业集聚对房地产价格存在着异质性影响。选取产业集聚水平、人口集聚水平和土地成本等反映城市异质性和房地产市场发展条件的变量为门限变量,实证结果证实了产业集聚对房地产价格的影响是异质的,研究还发现对于大多数正处于发展中的城市来说,城市总体产业集聚水平较低、人口集聚水平较低和土地成本较低,产业集聚对房地产价格的正向影响更大。分产业来看,制造业集聚在城市产业集聚水平不高时对房地产价格的正向促进作用更大,而金融业集聚在城市产业集聚水平高于某一门槛后对房地产价格的正向促进作用则日益增强,这与产业升级理论下的城市经济发展现实相一致,对于北京上海等产业集聚度高的城市来说,金融业集聚对房地产价格上涨起到了更大的作用,而对于大多数普通城市,制造业等实体经济的集聚发展能够显着的拉动房地产价格上涨。基于上述研究结论,结合我国区域经济发展与房地产市场发展实际,提出促进房地产市场健康平稳发展的政策建议:一是促进各区域均衡协调发展,缩小东部地区与中西部地区的经济发展差距、产业集聚差距和房地产价格差距。二是重视人口集聚对大中城市房地产价格的影响,尽可能采取多种形式保障好大中城市流入人口的住房问题。三是重视大中城市土地成本持续上升导致的房地产价格攀升问题,合理解决地方政府用住宅土地出让收入补贴工业用地开发成本,用住宅土地出让收入弥补财政赤字的问题,彻底遏制地方政府提高土地价格、助推房地产价格上涨的土地经营动机。加强顶层设计和对财税制度、官员晋升评价、中央地方事权划分、土地性质变更出让等多项重要经济制度的系统性改革,将房地产回归到居住属性的普通商品,实现“房住不炒”的房地产市场发展目标。
李卓[9](2021)在《我国区域性金融风险的计量研究》文中认为2008年爆发的国际金融危机是近年所发生的一次重大跨区域金融风险事件,它使得世界经济陷入了第二次世界大战以来历经时间最长、波及范围最广、影响程度最深的一次下行调整。危机产生的严重后果以及此后持续数年的风险处置与应对,促使人们大幅提升对金融风险问题的关注,并拥有更多的历史样本与经验证据去探索金融风险生成演化相关机制,也发展出了更为多元的研究视角。就我国而言,长期的政策刺激以及地方政府具有独特影响力的经济发展模式,在带来经济快速增长的同时,也不断累积金融脆弱、加重环境扭曲,导致各地金融风险防控形势依旧严峻。中国已有的重大金融风险都是发生在某些特定区域范围之内,特别是近年来浙江温州、内蒙鄂尔多斯、陕西神木等地区相继出现的风险事件,使我们意识到,对于一个经济地理空间十分巨大、地区之间存在明显异质性的国家,金融风险会更多地表现出区域性的特征与后果。正是基于上述对于整体环境及历史样本的认知,本文选取区域性金融风险的视角开展相关研究,主要包括以下内容:首先,结合我国现实状况,认识区域性金融风险。第2章,详细界定区域性金融风险内涵,归纳其特征,并结合当前实际,对区域性金融风险生成的内外部因素进行理论分析。论述中将关注视角重点放在我国特有的地方经济发展模式、金融体系的脆弱性及其所面对的区域环境。在金融风险动态演化方面,重点围绕金融体系内部各机构之间,金融体系与政府、企业、家户等部门之间,以及不同区域与区域之间的多种关联互动渠道,探讨金融风险区域内外的传染机制,并就区域性金融风险演化发展给予理论描述与说明。其次,构造区域性金融风险测度指标,识别我国区域风险状态及其引致因素。第3章,利用熵权法合成风险测度指标,测算我国各省份区域性金融风险时变特征。结果表明,2009至2017年中国区域性金融风险呈现震荡上升趋势,多数省份2017年金融风险水平已明显高于2009年后全球金融危机期间的风险水平。在风险贡献方面,地方政府债务负担为首要风险因素,而信贷相关问题以及房地产泡沫也是明显高于其他因素的重要风险动因。该部分还采用KMV违约模型对地方政府债务风险进行测算,描述我国地方政府债务风险严峻状态,进一步佐证风险测度结论,也为后续研究做好铺垫。第三,聚焦政府公共部门,刻画地方政府债务对区域性金融风险的影响。政府公共部门是区域性金融风险的首要来源。第4章,采用空间杜宾模型对我国省际区域性金融风险以及地方政府债务风险进行分析,实证检验二者的空间关联机制。研究发现,地方政府债务风险对区域性金融风险具有较强的空间溢出效应,二者存在共振效应;区域性金融风险具有较强的空间溢出效应,而改善经济基础、金融环境、法治环境以及经济参与主体,对于缓释金融风险和地方债务违约风险具有积极作用。第四,关注实体企业部门,实证产业结构变化与区域性金融风险的关系。企业部门也是区域性金融风险的重要来源。第5章,立足三次产业结构以及部分重要行业发展的视角,分析产业结构差异对区域性金融风险的影响效应。采用固定效应面板模型,考察产业结构调整结果与区域性金融风险关系。研究发现,第二产业占比增加总体上可以降低区域性金融风险,而第三产业占比对风险测度的总体影响则为正值。第二产业中,工业占比对区域性金融风险影响表现为负,而建筑业占比的影响表现为正;第三产业中,金融保险业以及房地产行业对区域性金融风险的影响表现为正,交通运输、仓储及邮电通信业以及批发和零售业的影响总体表现为负,住宿和餐饮业未见显着影响。采用面板向量自回归模型以及相应的脉冲响应函数分析产业结构对区域性金融风险影响的动态路径。实证结果除基于动态角度进一步验证了第二、第三产业对区域性金融风险的影响方向外,还进一步揭示了工业、建筑业、金融保险业、房地产业等重要行业与区域性金融风险的动态关系。最后,站在房地产泡沫传染视角,分析区域性金融风险的空间关联效应。外溢传染是区域性金融风险的重要危害特征。第6章,围绕房地产泡沫这一区域性金融风险的重要引致因素,采用动态DY连通测度方法,实证考察区域性金融风险空间关联问题。研究显示,我国各类别城市群体间的总体连通度测算结果较好地捕捉了近年来房地产市场状态,其中,2016至2018年高位运行以及近期连通度明显抬升,提示金融风险引致因素在相应时点的跨区域联动现象。此外,就各类城市群体之间房地产市场关联关系看,一线城市同新一线城市、二线城市、三线城市群体之间存在持续的较高正向关联,同时,一线城市对二线以及三线城市群体的净溢出效应近期有所减弱,而二线城市对新一线城市与三线城市的净溢出效应近期却显着加强。上述实证结果,不仅描述了地产泡沫传播的方向与力度,也为控制房地产泡沫这一重要风险引致因素提供了区域关联视角下的治理依据。整体而言,本文按照认识区域性金融风险,测度区域性金融风险,识别风险重要引致因素,刻画风险因素作用机理,分析风险空间关联机制的基本逻辑和顺序,围绕中国区域性金融风险的现实问题,给出了多元视角的计量刻画,对于我国金融风险防范工作具有积极理论意义。
冯文芳[10](2020)在《金融杠杆与资产价格泡沫:影响机制及其监控研究》文中研究指明资产价格泡沫和高杠杆在历史上反复出现,但次贷危机后的资产价格泡沫形成机制和高杠杆作用机理更加复杂;现代金融技术发展产生的影子银行和金融衍生品等不但空转套利推高金融杠杆,而且让问题复杂化;内嵌于银行体系的表外业务严重期限错配以及中国经济转型期结构中存在的各种扭曲现象,使得金融杠杆过度膨胀导致的资产价格泡沫演化过程中出现的新问题和新情况,原有传统理论都无法较好解释经济中的资产价格泡沫现象。目前,中国正处于经济转型和结构升级的重要关口,党的十九大明确提出“我国经济已由高速增长阶段转向高质量发展阶段”,经济增长速度从高速增长开始转为中高速增长,但是金融杠杆仍在不断攀升,金融杠杆增长与经济发展错配现象严重,资本市场的过度繁荣引致资金在金融体系内空转,导致资产价格泡沫和系统性金融风险不断膨胀和累积。金融危机后上述问题成为经济学研究的热点并引起社会各界的广泛关注。在此背景下,首先,通过阅读和归纳国内外关于金融杠杆、资产价格泡沫和经济增长等方面的经典着作和前沿文献,厘清选题的发展脉络、研究现状、存在问题、争论焦点和研究盲点等,为后期研究顺利展开提供文献支撑和理论基础。其次,准确定义资产价格泡沫是研究的逻辑起点,遵循目前国内外经济学界的三种主流观点,对资产价格泡沫的涵义进行明确界定并分析了其一般特征;从理论角度和影响因素角度剖析了资产价格泡沫的形成机理;运用ADF、SADF、GSADF和RADF等资产价格泡沫识别方法,对资产价格泡沫的存在性、存在周期、出现频率和程度大小等进行了识别和检验,实证结果表明在样本研究期内显着存在周期性资产价格泡沫;并且运用协整模型和向量误差修正模型(VECM)提取了资产价格泡沫。第三,以金融杠杆经济本质研究作为切入点,从微观和宏观角度分别定义和度量了金融杠杆,揭示微观金融杠杆与宏观金融杠杆背离的原因和实质;采用债务收入比法和即时拆分法(TD)测算了我国的金融杠杆;重点揭示和研究了金融加杠杆的根源、实质、动力、渠道、特点和成因等;不但构建了金融杠杆驱动的资产价格泡沫模型,从理论上厘清两者之间的内在逻辑关系,而且把滚动宽窗Granger因果检验模型和Bootstrap统计检验结合,从实证上验证了金融杠杆和资产价格泡沫相互动态影响机制的程度、频率与方向以及与经济事件之间的关系。第四,高杠杆和资产价格泡沫仅是表象,隐藏其背后的实质是虚拟经济与实体经济的失衡,因此加入经济增长因素,从表象分析上升到实质研究,进一步揭示金融杠杆、资产价格泡沫与金融、经济之间的影响效应。具体内容包括:(1)运用差分广义矩估计(DGMM)和门限效应,对国内16家上市银行从两个阶段检验了货币政策传导的银行风险承担渠道的杠杆机制的有效性,实证结果表明:货币政策可以通过杠杆率对银行风险承担产生显着影响;货币政策与银行风险承担之间存在双重杠杆率门限效应;(2)运用傅里叶变换和频谱分析法研究了资产价格泡沫与经济增长之间的周期联动效应,实证结果表明:我国资产价格泡沫和经济增长的周期联动关系较复杂,并且两者在周期联动上更多的存在背离现象;(3)基于R&D模型,加入金融杠杆因素,研究了不存在和引入资产价格泡沫时经济增长的均衡结果,并推断出资产价格泡沫与经济增长共容的条件。(4)运用MCMC算法和SV-TVP-SVAR模型从时期与时点两个角度对金融杠杆、资产价格泡沫与经济增长三者之间的时变关系进行验证,实证结果表明:三个经济变量之间具有非常显着的时变特征。最后,高杠杆下去杠杆是必然选择,准确定义去杠杆的涵义并对目前去杠杆存在的误区做了澄清;分别探索了实体去杠杆和金融去杠杆的路径;运用合成控制法(SCM)检验了限贷政策能否抑制房地产泡沫?实证结果表明:在4个研究样本中,限贷政策对3个样本的商品房销售价格无法起到降低的作用;囿于传统资产价格泡沫监控研究方法与模型的缺陷,尝试运用人工智能中的支持向量回归(SVR)模型和BP神经网络(BPNN)技术构建了资产价格泡沫监控系统,结果表明,人工智能技术可以很好逼近与诠释样本历史数据所蕴含的内在规律,有效实现监控功能。根据上述主要研究结论,提出了四点政策建议:(1)拓展宏观货币政策调控目标范围,把资产价格纳入中央银行决策信息集,构建货币和信贷流动以及资产价格泡沫监控系统;(2)减少或消除刚性兑付和不必要的政府隐性担保,实现国有资产管理体制和商业银行行为市场化,政府职能回归公共管理本质;(3)坚持中性稳健的货币政策,保持适度的货币流动性,建立宏观审慎评估体系MPA和对金融体系资产实施穿透管理,对影子银行进行有效管理;(4)精准掌控“结构性去杠杆”的节奏、力度、时间、主体,有条不紊降低杠杆率。
二、当前实施积极的财政货币政策对西宁经济发展的作用(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、当前实施积极的财政货币政策对西宁经济发展的作用(论文提纲范文)
(1)经济增长、人力资本与逆周期政策选择的动态效应(论文提纲范文)
一、文献综述 |
二、研究方法及指标数据说明 |
(一)模型构建与变量选取 |
1. VAR模型的构建 |
(二)政策组合区制和样本区间 |
(三)变量的选取 |
三、实证结果与分析 |
(一)第一阶段四变量VAR模型分析 |
1.单位根检验及最优滞后阶数的确定 |
2.Granger因果检验 |
3.VAR的稳定性检验 |
4.脉冲响应函数 |
5.方差分解分析 |
(二)五变量VAR模型分析 |
1.平稳性检验及向量自回归(VAR)建模 |
2.Granger因果检验 |
3.VAR的稳定性检验 |
4.脉冲响应分析 |
(1)GDP脉冲响应分析 |
(2)HC1脉冲响应分析 |
(3)HC2脉冲响应分析 |
5.预测误差的方差分解 |
四、结论及政策启示 |
(一)研究结论 |
(二)政策建议 |
(3)我国信贷供给传导机制及其宏观经济效应研究(论文提纲范文)
摘要 |
abstract |
第1章 绪论 |
1.1 选题背景与研究意义 |
1.1.1 选题背景 |
1.1.2 研究意义 |
1.2 国内外文献综述 |
1.2.1 信贷供给总量的经济效应 |
1.2.2 信贷供给结构的经济效应 |
1.2.3 信贷供给价格的经济效应 |
1.2.4 信贷风险累积的经济效应 |
1.2.5 信贷供给监管对货币政策有效性的影响效应 |
1.3 主要研究目标、论文结构及主要内容 |
1.3.1 主要研究目标 |
1.3.2 论文结构及主要内容 |
1.4 研究方法与主要贡献 |
1.4.1 研究方法 |
1.4.2 主要贡献 |
第2章 信贷供给宏观经济效应的理论基础 |
2.1 信贷供求理论 |
2.1.1 宏观信贷供求理论 |
2.1.2 微观信贷供求理论 |
2.2 信贷价格理论 |
2.2.1 可贷资金理论 |
2.2.2 金融抑制理论 |
2.3 信贷风险理论 |
2.3.1 Fisher的“债务-通货紧缩”理论 |
2.3.2 金融脆弱性理论 |
2.4 信贷配给与信贷传导理论 |
2.4.1 均衡配给理论 |
2.4.2 银行信贷渠道传导理论 |
2.4.3 资产负债表渠道传导理论 |
第3章 我国信贷供给传导机制及其与产出的动态关联分析 |
3.1 基于DSGE模型我国信贷供给的微观传导机制分析 |
3.1.1 模型设定 |
3.1.2 模型均衡 |
3.1.3 参数校准与模拟分析 |
3.2 我国信贷供给与产出的波动特征及动态关联性分析 |
3.2.1 MS-GAS-TVTP模型与TVP-VECM模型原理 |
3.2.2 我国产出与信贷波动的阶段性变迁识别及时变转移分析 |
3.2.3 动态关联性分析 |
3.3 本章小结 |
第4章 我国信贷供给总量与期限结构的宏观经济效应分析 |
4.1 信贷供给总量对宏观经济影响的理论机制分析 |
4.2 我国信贷总量扩张与收缩对宏观经济的非对称影响效应分析 |
4.2.1 非线性自回归分布滞后(NARDL)模型原理 |
4.2.2 变量选取、数据处理及平稳性检验 |
4.2.3 我国信贷总量扩张与收缩对产出的非对称影响效应 |
4.2.4 我国信贷总量扩张与收缩对通货膨胀的非对称影响效应 |
4.3 我国信贷供给期限结构的宏观经济效应分析 |
4.3.1 SV-TVP-FAVAR模型原理 |
4.3.2 我国信贷供给期限结构对产出和通货膨胀的时变效应分析 |
4.3.3 我国信贷供给短期结构对产出和通货膨胀的时变效应分析 |
4.3.4 我国信贷供给中长期结构对产出和通货膨胀的时变效应分析 |
4.4 本章小结 |
第5章 我国信贷供给价格传导机制及其非线性效应分析 |
5.1 信贷供给对宏观经济增长的价格传导机制分析 |
5.1.1 投资渠道传导机制分析 |
5.1.2 消费渠道传导机制分析 |
5.2 ST-BVAR模型原理 |
5.2.1 ST-BVAR模型设定 |
5.2.2 ST-BVAR模型的非线性检验 |
5.3 不同经济周期下信贷价格对经济增长的两阶段传导效应分析 |
5.3.1 变量选取、数据处理与经济周期波动区制识别 |
5.3.2 第一阶段信贷价格对投资与消费的非线性影响效应 |
5.3.3 第二阶段投资与消费对产出的非线性影响效应 |
5.4 本章小结 |
第6章 信贷风险对宏观经济及信贷调控有效性的异质性影响效应分析 |
6.1 多元方向分位数向量自回归(MDQVAR)模型 |
6.2 不同经济周期下信贷风险对宏观经济的异质性影响效应分析 |
6.2.1 理论机制分析 |
6.2.2 变量选取及数据处理 |
6.2.3 分位数脉冲响应分析 |
6.3 不同信贷风险水平下信贷调控宏观经济有效性分析 |
6.3.1 变量选取及数据处理 |
6.3.2 分位数脉冲响应分析 |
6.4 本章小结 |
第7章 我国信贷监管对货币政策有效性的影响效应分析 |
7.1 理论背景与影响机制分析 |
7.2 信贷监管的不同强度对货币政策有效性的异质性影响分析 |
7.2.1 变量选取及数据说明 |
7.2.2 经济增长目标下信贷监管对货币政策有效性的影响分析 |
7.2.3 物价稳定目标下信贷监管对货币政策有效性的影响分析 |
7.2.4 金融稳定目标下信贷监管对货币政策有效性的影响分析 |
7.3 本章小结 |
结论 |
参考文献 |
作者简介及在学期间所取得的科研成果 |
致谢 |
(4)财政政策与货币政策的动态调控效应——基于时变参数向量自回归模型的检验(论文提纲范文)
一、引言 |
二、文献综述 |
三、财政政策与货币政策动态搭配的理论分析 |
(一)财政政策与货币政策动态搭配协同发力的内在机理 |
(二)财政政策与货币政策的动态搭配方式 |
1. 经济发展上升阶段的财政政策与货币政策搭配。 |
2. 经济发展下降阶段的财政政策与货币政策搭配。 |
3. 经济发展平稳阶段的财政政策与货币政策搭配。 |
(三)小结 |
四、实证模型构建与估计 |
(一)模型构建 |
(二)变量选取与数据指标说明 |
(三)平稳性检验 |
五、实证结果分析 |
(一)模型参数估计结果分析 |
(二)变量同期关系的时变特征分析 |
(三)时变脉冲响应分析 |
1. 等间隔脉冲响应分析。 |
2. 特定时点脉冲响应分析。 |
(四)稳健性检验 |
六、结论 |
(5)我国东西部地区水利投资结构变化研究 ——基于江苏与陕西两省的数据对比(论文提纲范文)
摘要 |
Abstract |
1 绪论 |
1.1 研究背景及意义 |
1.1.1 研究背景 |
1.1.2 研究意义 |
1.2 国内外研究综述 |
1.2.1 国外研究现状 |
1.2.2 国内研究现状 |
1.2.3 研究现状评述 |
1.3 研究内容与技术路线 |
1.3.1 研究内容 |
1.3.2 研究方法 |
1.3.3 技术路线 |
1.4 本章小结 |
2 概念界定及相关理论基础 |
2.1 水利投资的概述 |
2.1.1 水利投资的定义 |
2.1.2 水利投资的特征 |
2.1.3 水利投资的类型 |
2.2 水利投资结构的概述 |
2.2.1 水利投资结构的定义 |
2.2.2 水利投资结构的分类 |
2.2.3 水利投资结构的变化 |
2.3 我国东西部地区水利投资结构差异 |
2.3.1 东西部范围划分 |
2.3.2 东西部区域差异 |
2.3.3 东西部水利投资结构的差异 |
2.4 相关理论 |
2.4.1 公共产品理论 |
2.4.2 公共治理理论 |
2.4.3 绿色金融理论 |
2.5 本章小结 |
3 江苏与陕西两省水利投资结构变化趋势分析 |
3.1 研究区概况 |
3.1.1 研究对象 |
3.1.2 水利发展情况 |
3.1.3 经济发展情况 |
3.2 水利投资结构的变化历程 |
3.2.1 资金总量变化 |
3.2.2 来源结构变化 |
3.2.3 用途结构变化 |
3.2.4 隶属关系结构变化 |
3.2.5 项目规模结构变化 |
3.3 水利投资结构的变化值测度 |
3.3.1 水利投资结构的变化值 |
3.3.2 水利投资结构的变化速度 |
3.3.3 水利投资结构的变化方向与强度 |
3.4 本章小结 |
4 江苏与陕西两省水利投资结构变化合理度分析 |
4.1 水利投资结构变化合理度的影响机理及测算方法 |
4.1.1 水利投资结构变化合理度的内涵 |
4.1.2 水利投资结构变化合理度的影响机理 |
4.1.3 水利投资结构变化合理度的测算方法 |
4.2 水利投资结构变化合理度的测算 |
4.2.1 规范化决策矩阵 |
4.2.2 确定正理想解和负理想解 |
4.2.3 欧氏距离及合理度的测算 |
4.3 水利投资结构变化合理度的分析 |
4.3.1 水利投资来源结构合理度的分析 |
4.3.2 水利投资用途结构合理度的分析 |
4.4 本章小结 |
5 江苏与陕西两省水利投资结构变化影响因素分析 |
5.1 指标体系构建 |
5.1.1 指标选取的原则 |
5.1.2 指标体系构建的思路 |
5.1.3 指标选取及量化处理 |
5.2 模型构建 |
5.2.1 ADF平稳性检验 |
5.2.2 Johansen协整检验 |
5.2.3 VAR模型的构建 |
5.3 水利投资结构变化影响因素分析 |
5.3.1 经济发展对水利投资结构变化的影响 |
5.3.2 产业结构升级对水利投资结构变化的影响 |
5.3.3 资源配置优化对水利投资结构变化的影响 |
5.3.4 各因素对水利投资结构变化的影响程度分析 |
5.4 本章小结 |
6 我国东西部地区水利投资结构优化的对策及建议 |
6.1 坚持政策导向,扩大投资规模 |
6.2 优化产业结构,促进经济发展 |
6.3 深化市场机制,拓宽融资渠道 |
6.4 均衡资源配置,加强技术创新 |
6.5 保护生态环境,建设生态文明 |
6.6 明确责任分工,完善保障机制 |
7 结论与展望 |
7.1 研究结论 |
7.2 研究展望 |
致谢 |
参考文献 |
攻读学位期间主要研究成果 |
(6)我国资产价格泡沫的形成机理与传染效应研究(论文提纲范文)
中文摘要 |
abstract |
第1章 绪论 |
1.1 选题背景与研究意义 |
1.1.1 选题背景 |
1.1.2 研究意义 |
1.2 资产价格泡沫的识别与测度研究综述 |
1.2.1 资产价格泡沫的识别研究 |
1.2.2 资产价格泡沫的测度研究 |
1.3 资产价格泡沫的形成机理研究综述 |
1.3.1 有效市场假说与理性资产价格泡沫 |
1.3.2 金融摩擦与理性资产价格泡沫 |
1.3.3 委托投资与信贷泡沫 |
1.3.4 行为金融学框架下的资产价格泡沫 |
1.4 资产价格泡沫的传染效应与政策效应研究综述 |
1.4.1 资产价格泡沫的传染效应研究 |
1.4.2 资产价格泡沫的政策治理研究 |
1.5 研究方法、研究创新与研究不足及展望 |
1.5.1 研究方法 |
1.5.2 研究创新 |
1.5.3 研究不足及展望 |
1.6 研究框架与研究内容 |
1.6.1 研究框架 |
1.6.2 研究内容 |
第2章 资产价格泡沫的理论基础 |
2.1 资产价格泡沫的内涵与演化过程 |
2.1.1 资产价格泡沫的内涵 |
2.1.2 资产价格泡沫的演化过程 |
2.2 理性资产价格泡沫的理论基础 |
2.2.1 局部均衡下理性资产价格泡沫理论基础 |
2.2.2 内生性资产价格泡沫 |
2.2.3 外生性资产价格泡沫 |
2.3 非理性资产价格泡沫理论基础 |
2.3.1 异质信念与有限套利理论 |
2.3.2 噪声交易理论与泡沫乘骑理论 |
2.4 本章小结 |
第3章 资产价格泡沫的识别研究 |
3.1 ADF方法的检验原理 |
3.1.1 ADF单位根检验 |
3.1.2 理性资产价格泡沫检验原理 |
3.1.3 资产价格崩溃检验原理 |
3.2 PSY方法的递归算法 |
3.2.1 资产价格泡沫存在性的识别程序 |
3.2.2 资产价格泡沫周期的识别程序 |
3.3 我国股票市场与房地产市场资产价格泡沫的识别检验 |
3.3.1 我国股票市场资产价格泡沫的识别检验 |
3.3.2 我国房地产市场资产价格泡沫的识别检验 |
3.4 本章小结 |
第4章 中国宏观金融杠杆对房地产价格泡沫的非对称动态影响效应研究 |
4.1 金融杠杆不确定性下的资产定价理论模型 |
4.1.1 模型的基本假设 |
4.1.2 理论分析 |
4.2 NARDL计量模型 |
4.3 资产价格泡沫的金融杠杆的非对称动态效应检验 |
4.3.1 数据说明与指标测度 |
4.3.2 模型估计结果分析 |
4.3.3 金融杠杆的动态效应分析 |
4.4 本章小结 |
第5章 异质信念、融资融券失衡与股票价格泡沫 |
5.1 我国沪、深股票市场资产价格泡沫测度 |
5.2 RTV-VAR模型 |
5.3 我国多层次股票市场资产价格泡沫成因分析 |
5.3.1 数据选择 |
5.3.2 实证分析 |
5.4 本章小结 |
第6章 我国股票市场行业间资产价格泡沫传染效应研究 |
6.1 时变动态连通性指数构建 |
6.1.1 时变向量自回归模型 |
6.1.2 时变动态DY连通性指数构建 |
6.2 我国股票市场分行业资产价格泡沫测度 |
6.2.1 数据选取 |
6.2.2 分行业资产价格泡沫测度——基于趋势匹配方法 |
6.3 行业间资产价格泡沫连通性实证分析 |
6.3.1 总体动态连通性指数 |
6.3.2 总的带有方向的动态连通性指数 |
6.3.3 两两行业间泡沫净溢出动态连通性指数 |
6.4 本章小结 |
第7章 我国货币政策对资产价格泡沫的影响效应研究 |
7.1 货币政策对资产价格泡沫的影响效应理论基础 |
7.2 数据选取与实证模型 |
7.2.1 数据选取 |
7.2.2 计量模型介绍 |
7.3 货币政策对股票市场资产价格泡沫的影响效应实证分析 |
7.3.1 等间隔脉冲响应 |
7.3.2 等时点脉冲响应 |
7.4 货币政策对房地产市场资产价格泡沫的影响效应实证分析 |
7.4.1 等间隔脉冲响应 |
7.4.2 等时点脉冲响应 |
7.5 本章小结 |
结论 |
参考文献 |
攻读博士学位期间发表的学术论文及其他科研成果 |
致谢 |
(7)经济不确定性、经济周期与货币政策有效性研究(论文提纲范文)
摘要 |
Abstract |
第1章 绪论 |
1.1 选题背景与研究意义 |
1.1.1 选题背景 |
1.1.2 研究意义 |
1.2 文献综述 |
1.2.1 经济不确定性对经济周期影响机制的研究综述 |
1.2.2 经济不确定性对货币政策有效性影响机制的研究综述 |
1.2.3 经济周期不同阶段下货币政策有效性研究综述 |
1.3 研究方法与创新 |
1.3.1 研究方法 |
1.3.2 主要创新与贡献 |
1.4 论文框架与结构安排 |
第2章 概念界定与理论基础 |
2.1 经济不确定性概念的起源、界定与度量 |
2.2 经济不确定性对经济周期影响机制的理论基础 |
2.3 经济不确定性对货币政策有效性影响的理论基础 |
2.4 不同经济周期下货币政策调控的理论基础 |
2.5 本章小结 |
第3章 我国经济不确定性与经济周期测度及其协动性 |
3.1 我国经济不确定性走势分析 |
3.2 我国经济周期指数的测度和走势分析 |
3.2.1 传统经济周期测度方法的总结与利弊评述 |
3.2.2 MS-DFM测度经济周期的原理简述 |
3.2.3 我国经济周期指数的实时测度 |
3.2.4 我国经济周期统计特征与趋势分析 |
3.3 我国经济不确定性与经济周期协动性检验 |
3.3.1 经济不确定性与经济周期时变格兰杰因果检验 |
3.3.2 经济不确定性与经济周期间的动态相关性检验 |
3.3.3 经济不确定性与经济周期间的动态溢出效应检验 |
3.4 本章小结 |
第4章 不同经济不确定性水平下的货币政策有效性研究 |
4.1 不同政策目标和不确定性水平下货币政策量价选择的初步探讨 |
4.1.1 不同政策目标下数量型与价格型货币政策有效性探讨 |
4.1.2 经济不确定影响下货币政策有效性探讨 |
4.1.3 双重背景下数量型与价格型政策选择的探讨 |
4.2 我国经济不确定性阶段划分 |
4.2.1 MS-AR模型 |
4.2.2 经济不确定性区制划分 |
4.3 LT-TVP-VAR模型构建与参数估计 |
4.3.1 LT-TVP-VAR模型构建 |
4.3.2 数据选取与处理 |
4.3.3 参数估计与检验 |
4.4 不同经济不确定性水平下货币政策时变反应与调控机制 |
4.4.1 不同经济不确定性水平下货币政策时变反应 |
4.4.2 数量型与价格型政策对产出调控的实时对比 |
4.4.3 数量型与价格型政策对通胀调控的实时对比 |
4.5 本章小结 |
第5章 经济周期不同阶段下的货币政策有效性研究 |
5.1 经济周期不同阶段下货币政策调控的典型事实 |
5.1.1 经济周期波动下货币政策调控的历史演变 |
5.1.2 经济周期扩张阶段货币政策调控的有效性分析 |
5.1.3 经济周期收缩阶段货币政策调控的有效性分析 |
5.2 经济周期不同阶段下货币政策调控效果对比 |
5.2.1 TH-SVAR模型介绍 |
5.2.2 数据选取与检验 |
5.2.3 经济周期不同阶段下货币政策对产出的调控机制检验 |
5.2.4 经济周期不同阶段下货币政策对通胀的调控机制检验 |
5.2.5 数量型与价格型货币政策在经济周期不同阶段下的有效性对比 |
5.3 经济周期不同阶段下货币政策调控的非对称性检验 |
5.3.1 SEIVAR模型估计原理与脉冲响应函数构建 |
5.3.2 数量型货币政策在经济周期不同阶段下的非对称性检验 |
5.3.3 价格型货币政策在经济周期不同阶段下的非对称性检验 |
5.4 本章小结 |
第6章 未预期冲击、预期管理与货币政策有效性研究 |
6.1 价格型和数量型货币政策的适用条件 |
6.2 考虑政策预期因素的DSGE模型构架 |
6.2.1 私人家庭 |
6.2.2 生产厂商 |
6.2.3 政府部门 |
6.2.4 货币当局 |
6.3 数据处理与参数估计 |
6.3.1 数据选取与处理 |
6.3.2 参数校准与设定 |
6.3.3 冲击路径识别 |
6.3.4 参数贝叶斯估计 |
6.4 脉冲响应与方差分解分析 |
6.4.1 脉冲响应分析 |
6.4.2 方差分解分析 |
6.5 本章小结 |
结论和政策建议 |
参考文献 |
攻读学位期间发表的学术论文及科研成果 |
致谢 |
(8)中国产业集聚对区域房地产价格的影响研究(论文提纲范文)
摘要 |
abstract |
第1章 绪论 |
1.1 研究背景与意义 |
1.1.1 研究背景 |
1.1.2 研究意义 |
1.2 文献综述 |
1.3 研究内容与方法 |
1.3.1 研究内容 |
1.3.2 论文结构 |
1.3.3 研究方法 |
1.4 可能的创新和不足 |
1.4.1 可能的创新 |
1.4.2 不足之处 |
第2章 概念界定与理论基础 |
2.1 相关概念界定 |
2.1.1 产业集聚 |
2.1.2 房地产 |
2.1.3 房地产价格 |
2.2 产业集聚相关理论 |
2.2.1 产业区理论 |
2.2.2 工业区位理论 |
2.2.3 增长极理论 |
2.2.4 新经济地理理论 |
2.2.5 竞争优势理论 |
2.3 房地产价格决定的相关理论 |
2.3.1 供需理论 |
2.3.2 地租与竞租理论 |
2.3.3 城镇化理论 |
第3章 我国房地产市场发展历程的阶段性分析 |
3.1 房地产市场的形成阶段 |
3.2 房地产市场的快速发展阶段 |
3.3 房地产市场的政府主导阶段 |
3.4 房地产市场的稳健发展阶段 |
第4章 我国产业集聚测量和房地产市场区域差异 |
4.1 中国产业集聚程度现状 |
4.1.1 产业集聚的测量方法 |
4.1.2 我国不同产业集聚的区域差异表现 |
4.2 我国房地产价格的区域差异分析 |
4.2.1 我国房地产价格变化的总体趋势 |
4.2.2 我国房地产价格的区域差异分析 |
4.2.3 我国房地产价格的省际差异分析 |
第5章 不同产业集聚影响我国房地产价格的实证研究 |
5.1 产业集聚对房地产价格的影响的理论分析 |
5.1.1 影响房地产的购买需求 |
5.1.2 影响房地产的供给 |
5.1.3 理论模型 |
5.2 面板数据模型及估计方法 |
5.2.1 静态面板数据模型 |
5.2.2 动态面板数据模型 |
5.3 实证结果与分析 |
5.3.1 城市样本选择 |
5.3.2 实证模型与指标选取 |
5.3.3 相关性分析 |
5.3.4 估计结果与分析 |
5.4 内生性讨论与稳健性检验 |
5.4.1 房地产价格对产业集聚的影响 |
5.4.2 内生性处理与结果分析 |
5.4.3 稳健性检验 |
第6章 产业集聚影响房地产价格机制的实证研究 |
6.1 产业集聚影响房地产价格的机制分析 |
6.1.1 产业集聚通过人口集聚影响房地产价格 |
6.1.2 产业集聚通过土地供给影响房地产价格 |
6.2 中介效应检验 |
6.2.1 中介效应检验模型 |
6.2.2 中介变量 |
6.3 实证结果分析 |
6.3.1 人口集聚的中介效应检验 |
6.3.2 土地成本的中介效应检验 |
第7章 产业集聚对房地产价格的非线性影响 |
7.1 产业集聚对房地产价格非线性影响的理论分析 |
7.1.1 城市异质特征与外部条件差异 |
7.1.2 产业集聚影响的边际效应递减 |
7.2 非线性实证模型构建 |
7.2.1 门限面板回归模型介绍 |
7.2.2 门限变量选取 |
7.3 实证结果与分析 |
7.3.1 产业集聚对房价水平的非线性影响 |
7.3.2 不同行业集聚对房价水平的非线性影响 |
第8章 结论与政策建议 |
8.1 研究结论 |
8.2 政策建议 |
参考文献 |
作者简介及科研成果 |
致谢 |
(9)我国区域性金融风险的计量研究(论文提纲范文)
摘要 |
abstract |
第1章 绪论 |
1.1 选题背景与选题意义 |
1.2 文献综述 |
1.3 研究框架及研究创新 |
第2章 区域性金融风险特征与生成因素及其动态演化 |
2.1 区域性金融风险的概念与特征 |
2.2 区域性金融风险的生成因素 |
2.3 区域性金融风险的动态演化 |
2.4 本章小结 |
第3章 区域性金融风险测算 |
3.1 数据选取与熵权法介绍 |
3.2 我国省级区域性金融风险的测算 |
3.3 地方政府债务违约风险的测算 |
3.4 本章小结 |
第4章 地方政府债务风险对区域性金融风险的空间溢出效应 |
4.1 变量选取与模型设计 |
4.2 空间溢出效应实证分析 |
4.3 本章小结 |
第5章 产业结构差异对区域性金融风险的影响效应 |
5.1 变量选取与模型设计 |
5.2 产业结构差异对区域性金融风险的影响效应 |
5.3 产业结构差异性影响效应的动态实现路径 |
5.4 本章小结 |
第6章 区域性金融风险的空间关联效应分析 |
6.1 数据选取与模型介绍 |
6.2 我国房地产市场的空间关联实证分析 |
6.3 本章小结 |
第7章 结论建议与研究展望 |
7.1 研究结论与政策建议 |
7.2 研究不足与未来展望 |
参考文献 |
攻读博士学位期间发表的学术论文及其他科研成果 |
致谢 |
(10)金融杠杆与资产价格泡沫:影响机制及其监控研究(论文提纲范文)
摘要 |
Abstract |
主要缩略词、符号变量的注释表 |
第一章 绪论 |
1.1 研究背景与研究意义 |
1.1.1 研究背景 |
1.1.2 研究意义 |
1.2 研究思路、内容与方法 |
1.2.1 研究思路 |
1.2.2 研究内容 |
1.2.3 研究方法 |
1.3 论文创新与不足之处 |
1.3.1 论文创新 |
1.3.2 不足之处 |
第二章 文献综述 |
2.1 资产价格泡沫的含义及其形成机理研究综述 |
2.1.1 理性预期理论 |
2.1.2 行为金融理论 |
2.1.3 以分形和混沌理论为代表的非线性理论 |
2.1.4 信贷理论 |
2.1.5 金融发展理论 |
2.2 资产价格泡沫的存在性检验及测度研究综述 |
2.2.1 资产价格泡沫的存在性检验 |
2.2.2 资产价格泡沫存在性的检验方法 |
2.2.3 资产价格泡沫的测度方法 |
2.3 金融杠杆与资产价格泡沫的影响关系研究综述 |
2.3.1 金融杠杆与资产价格泡沫的影响关系 |
2.3.2 金融杠杆与房地产泡沫的影响关系 |
2.4 资产价格泡沫对经济增长的影响研究综述 |
2.4.1 资产价格泡沫对经济增长的促进作用 |
2.4.2 资产价格泡沫对经济增长的不利作用 |
2.4.3 资产价格泡沫与经济增长的周期联动效应 |
2.5 资产价格泡沫监控研究综述 |
2.5.1 主张从市场层面入手监控资产价格泡沫 |
2.5.2 从货币政策角度监控资产价格泡沫 |
2.5.3 利用托宾税监控资产价格泡沫 |
2.6 对现有文献的评述 |
2.7 本章小结 |
第三章 资产价格泡沫形成机理及其检验研究 |
3.1 资产价格泡沫的理论界定 |
3.1.1 资产 |
3.1.2 资产价格泡沫的载体类型 |
3.1.3 资产价格泡沫涵义界定 |
3.2 资产价格泡沫的形成机理分析 |
3.2.1 资产价格泡沫形成的理论基础 |
3.2.2 资产价格泡沫形成的影响因素 |
3.3 资产价格泡沫的检验 |
3.3.1 检验方法 |
3.3.2 变量说明及数据来源 |
3.3.3 检验结果及其分析 |
3.4 资产价格泡沫的提取 |
3.4.1 向量误差修正模型 |
3.4.2 资产价格泡沫提取 |
3.5 本章小结 |
第四章 金融杠杆与资产价格泡沫的影响机制研究 |
4.1 金融杠杆的经济本质及度量 |
4.1.1 金融杠杆的经济本质 |
4.1.2 金融杠杆的度量 |
4.2 金融加杠杆的机理分析 |
4.2.1 金融加杠杆的根源 |
4.2.2 金融加杠杆的实质 |
4.2.3 金融加杠杆的内在驱动力 |
4.2.4 金融加杠杆的实现路径 |
4.2.5 金融加杠杆的特征与成因 |
4.3 基于金融杠杆驱动的资产价格泡沫模型构建 |
4.3.1 理论分析 |
4.3.2 基于金融杠杆驱动的资产价格泡沫模型 |
4.4 金融杠杆与资产价格泡沫影响关系的实证分析 |
4.4.1 滚动宽窗Granger因果检验方法 |
4.4.2 变量说明与数据检验 |
4.4.3 实证结果及其分析 |
4.5 本章小结 |
第五章 金融杠杆和资产价格泡沫的影响效应研究 |
5.1 金融杠杆影响商业银行风险承担效应研究 |
5.1.1 理论分析 |
5.1.2 研究假设与变量定义 |
5.1.3 动态面板模型和门限检验方法 |
5.1.4 实证结果及其分析 |
5.2 资产价格泡沫与经济增长的周期联动效应研究 |
5.2.1 频谱分析方法 |
5.2.2 变量说明及数据来源 |
5.2.3 实证结果及其分析 |
5.3 资产价格泡沫与经济增长的共容效应研究 |
5.3.1 模型基本假设 |
5.3.2 资产价格泡沫与经济增长的共容条件 |
5.4 金融杠杆、资产价格泡沫与经济增长的时变效应研究 |
5.4.1 SV-TVP-SVAR模型 |
5.4.2 变量说明及数据来源 |
5.4.3 实证结果及其分析 |
5.5 本章小结 |
第六章 金融去杠杆与资产价格泡沫监控系统研究 |
6.1 去杠杆的范畴界定及认知 |
6.1.1 去杠杆的范畴界定 |
6.1.2 去杠杆的正确认知 |
6.2 实体去杠杆路径研究 |
6.2.1 “去杠杆”与“稳增长”的困境 |
6.2.2 实体去杠杆的路径 |
6.3 金融去杠杆路径研究 |
6.3.1 金融去杠杆的阶段和政策 |
6.3.2 金融去杠杆的路径 |
6.4 限贷政策抑制资产价格泡沫的效应研究 |
6.4.1 合成控制法 |
6.4.2 变量说明与数据来源 |
6.4.3 实证结果及其分析 |
6.5 资产价格泡沫监控系统研究 |
6.5.1 SVR模型与股市泡沫监控系统研究 |
6.5.2 BP神经网络与房地产泡沫监控系统研究 |
6.6 本章小结 |
第七章 研究结论与展望 |
7.1 主要研究结论 |
7.2 政策建议 |
7.3 研究展望 |
参考文献 |
攻读博士学位期间的科研情况 |
致谢 |
四、当前实施积极的财政货币政策对西宁经济发展的作用(论文参考文献)
- [1]经济增长、人力资本与逆周期政策选择的动态效应[J]. 陶克涛,刘培,孙娜. 中国软科学, 2021(11)
- [2]财政政策和货币政策协同效应研究——以青海省为例[J]. 孙亚刚,徐静,魏春飞,朱宝芳,徐茜. 青海金融, 2021(09)
- [3]我国信贷供给传导机制及其宏观经济效应研究[D]. 王薇. 吉林大学, 2021(01)
- [4]财政政策与货币政策的动态调控效应——基于时变参数向量自回归模型的检验[J]. 李成,丁顺文,李一帆. 经济理论与经济管理, 2021(07)
- [5]我国东西部地区水利投资结构变化研究 ——基于江苏与陕西两省的数据对比[D]. 井西宁. 西安理工大学, 2021
- [6]我国资产价格泡沫的形成机理与传染效应研究[D]. 林思涵. 吉林大学, 2021(01)
- [7]经济不确定性、经济周期与货币政策有效性研究[D]. 王国志. 吉林大学, 2021(01)
- [8]中国产业集聚对区域房地产价格的影响研究[D]. 周贺. 吉林大学, 2021(01)
- [9]我国区域性金融风险的计量研究[D]. 李卓. 吉林大学, 2021(01)
- [10]金融杠杆与资产价格泡沫:影响机制及其监控研究[D]. 冯文芳. 东南大学, 2020(02)