马敏:氧化石墨烯-亚甲蓝/普朗尼克复合物的制备及其光动力/光热抗癌效应研究论文

马敏:氧化石墨烯-亚甲蓝/普朗尼克复合物的制备及其光动力/光热抗癌效应研究论文

本文主要研究内容

作者马敏(2019)在《氧化石墨烯-亚甲蓝/普朗尼克复合物的制备及其光动力/光热抗癌效应研究》一文中研究指出:目的:制备具有分散性好、稳定性高、光热转换能力良好和单线态氧产量高的氧化石墨烯-亚甲蓝/普朗尼克F127(graphene oxide-methylene blue/pluronic F127,GO-MB/PF127)复合物,并将其应用于癌细胞的光动力疗法与光热疗法联合(the combination of photodynamic therapy and photothermal therapy,PDT/PTT)治疗。方法:采用薄膜水化法制备GO-MB/PF127复合物,通过傅里叶红外(fourier transform infrared,FTIR)光谱、拉曼光谱、透射电镜(transmission electron microscope,TEM)、紫外-可见(ultraviolet-visible,UV-vis)光谱、动态光散射(dynamic light scattering,DLS)和Zeta电位等方法对其进行多方面表征。通过光热转换试验考察其光热转换能力,采用紫外-可见分光光度法考察MB从GO-MB/PF127复合物中的释放行为,利用电化学方法检测光照射GO-MB/PF127复合物的水溶液生成单线态氧(singlet oxygen,1O2)的产量。以肝细胞(HL-7702)为研究对象,考察GO-MB/PF127复合物的细胞毒性。以人宫颈癌细胞(SiHa)为研究对象,研究GO-MB/PF127复合物的体外PDT、PTT及PDT/PTT抗癌效应,采用四甲基偶氮唑蓝(MTT)法检测HL-7702细胞和SiHa细胞的存活率,比较PDT/PTT与单独疗法对癌细胞的杀伤效应。通过体外1O2猝灭剂实验研究1O2对PDT杀伤效应的影响;利用AO/EB荧光染色法和流式细胞术考察GO-MB/PF127复合物的PDT/PTT对SiHa细胞的凋亡诱导作用,初步探讨其杀伤癌细胞的作用机理。结果:GO-MB复合物的FTIR光谱结果显示,GO的C=C伸缩振动峰和MB的C=N伸缩振动峰分别从1630 cm-1和1608 cm-1蓝移至1596 cm-1,且吸收峰强度增加,同时GO的O-H伸缩振动峰从3433 cm-1蓝移至3401 cm-1,说明GO和MB主要通过π–π相互作用和氢键结合,表明MB已成功负载至GO表面;拉曼光谱结果显示,ID/IG值为1.06,表明GO-MB复合物中的GO存在一定程度的无序和缺陷;UV-vis光谱结果显示,GO-MB复合物在664 nm处的吸收峰变宽并发生红移,当PF127修饰GO-MB复合物后,其吸收峰强度增加,但峰形不变,表明MB主要通过π–π相互作用与GO复合,且GO-MB/PF127复合物已成功制备;TEM结果显示PF127修饰GO-MB复合物后,其团聚现象明显改善,GO-MB/PF127复合物呈片状,表面较均匀;DLS和Zeta电位结果表明,GO-MB/PF127复合物的平均水合粒径为121.8nm,Zeta电位为-16.70 mV,具有良好的分散稳定性;光热转换实验结果表明,在808 nm近红外光照射下,GO-MB/PF127复合物具有良好的光热转换能力,其光热效应存在时间依赖性;紫外-可见分光光度法检测结果表明,在pH 5.50条件下,MB从GO-MB/PF127复合物中释放较快。电化学测定结果显示,1O2的动力学探针糠醇(furfuryl alcohol,FFA)在玻碳电极上具有很强的电化学响应,其电化学行为与支持电解质pH及扫描速率有关,二者影响显著;采用方波伏安法(square wave voltammetry,SWV)测得氧化峰电流与FFA浓度呈良好的线性关系,当浓度分别介于120μmol·L-1,20100μmol·L-1和100500μmol·L-1时,其线性回归方程分别为:Ipa=4.2645C+97.30(r=0.9914),Ipa=0.6563C+174.50(r=0.9944)和Ipa=0.1607C+224.17(r=0.9953),检出限为5.92 nmol·L-1;将该法用于定量测定FFA,测得660 nm光照GO-MB/PF127复合物后,其1O2稳态浓度为4.25×10-13mol·L-1。体外细胞毒性实验结果表明:GO-MB/PF127复合物对HL-7702细胞的毒性较弱,细胞存活率均不低于90%,具有良好的生物安全性;且单纯光照组与对照组相比无显著差异,表明单纯光照对HL-7702细胞基本无影响;当GO-MB/PF127复合物浓度介于050μg·mL-1时,对SiHa细胞的暗毒性较低;使用660 nm或808 nm光分别照射后,GO-MB/PF127复合物对SiHa细胞的杀伤效应较强,对SiHa细胞的杀伤率达53.3%、47.5%;联合660 nm和808 nm光照后,GO-MB/PF127复合物对SiHa细胞的杀伤效应显著增强,对SiHa细胞的杀伤率达76.4%,表明GO-MB/PF127复合物实现了PDT联合PTT双模式杀伤SiHa细胞且效果显著;体外1O2猝灭剂实验结果表明光照射GO-MB/PF127产生的1O2在PDT中起重要作用;AO/EB荧光染色法和流式细胞术检测结果表明,GO-MB/PF127复合物的PDT/PTT对SiHa细胞的杀伤效应主要通过诱导细胞凋亡实现。结论:采用薄膜水化法成功制备GO-MB/PF127复合物,方法简单、易操作,较好地解决了GO-MB复合物的团聚问题,且制备的GO-MB/PF127复合物具有良好的光热转换能力、可有效产生单线态氧。与单独的PDT或PTT相比,GO-MB/PF127复合物用于PDT/PTT对SiHa细胞的杀伤效应更显著,其通过诱导细胞凋亡杀伤SiHa细胞。因此,GO-MB/PF127复合物在癌症联合治疗方面有很大潜力。

Abstract

mu de :zhi bei ju you fen san xing hao 、wen ding xing gao 、guang re zhuai huan neng li liang hao he chan xian tai yang chan liang gao de yang hua dan mo xi -ya jia lan /pu lang ni ke F127(graphene oxide-methylene blue/pluronic F127,GO-MB/PF127)fu ge wu ,bing jiang ji ying yong yu ai xi bao de guang dong li liao fa yu guang re liao fa lian ge (the combination of photodynamic therapy and photothermal therapy,PDT/PTT)zhi liao 。fang fa :cai yong bao mo shui hua fa zhi bei GO-MB/PF127fu ge wu ,tong guo fu li xie gong wai (fourier transform infrared,FTIR)guang pu 、la man guang pu 、tou she dian jing (transmission electron microscope,TEM)、zi wai -ke jian (ultraviolet-visible,UV-vis)guang pu 、dong tai guang san she (dynamic light scattering,DLS)he Zetadian wei deng fang fa dui ji jin hang duo fang mian biao zheng 。tong guo guang re zhuai huan shi yan kao cha ji guang re zhuai huan neng li ,cai yong zi wai -ke jian fen guang guang du fa kao cha MBcong GO-MB/PF127fu ge wu zhong de shi fang hang wei ,li yong dian hua xue fang fa jian ce guang zhao she GO-MB/PF127fu ge wu de shui rong ye sheng cheng chan xian tai yang (singlet oxygen,1O2)de chan liang 。yi gan xi bao (HL-7702)wei yan jiu dui xiang ,kao cha GO-MB/PF127fu ge wu de xi bao du xing 。yi ren gong geng ai xi bao (SiHa)wei yan jiu dui xiang ,yan jiu GO-MB/PF127fu ge wu de ti wai PDT、PTTji PDT/PTTkang ai xiao ying ,cai yong si jia ji ou dan zuo lan (MTT)fa jian ce HL-7702xi bao he SiHaxi bao de cun huo lv ,bi jiao PDT/PTTyu chan du liao fa dui ai xi bao de sha shang xiao ying 。tong guo ti wai 1O2cu mie ji shi yan yan jiu 1O2dui PDTsha shang xiao ying de ying xiang ;li yong AO/EBying guang ran se fa he liu shi xi bao shu kao cha GO-MB/PF127fu ge wu de PDT/PTTdui SiHaxi bao de diao wang you dao zuo yong ,chu bu tan tao ji sha shang ai xi bao de zuo yong ji li 。jie guo :GO-MBfu ge wu de FTIRguang pu jie guo xian shi ,GOde C=Cshen su zhen dong feng he MBde C=Nshen su zhen dong feng fen bie cong 1630 cm-1he 1608 cm-1lan yi zhi 1596 cm-1,ju xi shou feng jiang du zeng jia ,tong shi GOde O-Hshen su zhen dong feng cong 3433 cm-1lan yi zhi 3401 cm-1,shui ming GOhe MBzhu yao tong guo π–πxiang hu zuo yong he qing jian jie ge ,biao ming MByi cheng gong fu zai zhi GObiao mian ;la man guang pu jie guo xian shi ,ID/IGzhi wei 1.06,biao ming GO-MBfu ge wu zhong de GOcun zai yi ding cheng du de mo xu he que xian ;UV-visguang pu jie guo xian shi ,GO-MBfu ge wu zai 664 nmchu de xi shou feng bian kuan bing fa sheng gong yi ,dang PF127xiu shi GO-MBfu ge wu hou ,ji xi shou feng jiang du zeng jia ,dan feng xing bu bian ,biao ming MBzhu yao tong guo π–πxiang hu zuo yong yu GOfu ge ,ju GO-MB/PF127fu ge wu yi cheng gong zhi bei ;TEMjie guo xian shi PF127xiu shi GO-MBfu ge wu hou ,ji tuan ju xian xiang ming xian gai shan ,GO-MB/PF127fu ge wu cheng pian zhuang ,biao mian jiao jun yun ;DLShe Zetadian wei jie guo biao ming ,GO-MB/PF127fu ge wu de ping jun shui ge li jing wei 121.8nm,Zetadian wei wei -16.70 mV,ju you liang hao de fen san wen ding xing ;guang re zhuai huan shi yan jie guo biao ming ,zai 808 nmjin gong wai guang zhao she xia ,GO-MB/PF127fu ge wu ju you liang hao de guang re zhuai huan neng li ,ji guang re xiao ying cun zai shi jian yi lai xing ;zi wai -ke jian fen guang guang du fa jian ce jie guo biao ming ,zai pH 5.50tiao jian xia ,MBcong GO-MB/PF127fu ge wu zhong shi fang jiao kuai 。dian hua xue ce ding jie guo xian shi ,1O2de dong li xue tan zhen kang chun (furfuryl alcohol,FFA)zai bo tan dian ji shang ju you hen jiang de dian hua xue xiang ying ,ji dian hua xue hang wei yu zhi chi dian jie zhi pHji sao miao su lv you guan ,er zhe ying xiang xian zhe ;cai yong fang bo fu an fa (square wave voltammetry,SWV)ce de yang hua feng dian liu yu FFAnong du cheng liang hao de xian xing guan ji ,dang nong du fen bie jie yu 120μmol·L-1,20100μmol·L-1he 100500μmol·L-1shi ,ji xian xing hui gui fang cheng fen bie wei :Ipa=4.2645C+97.30(r=0.9914),Ipa=0.6563C+174.50(r=0.9944)he Ipa=0.1607C+224.17(r=0.9953),jian chu xian wei 5.92 nmol·L-1;jiang gai fa yong yu ding liang ce ding FFA,ce de 660 nmguang zhao GO-MB/PF127fu ge wu hou ,ji 1O2wen tai nong du wei 4.25×10-13mol·L-1。ti wai xi bao du xing shi yan jie guo biao ming :GO-MB/PF127fu ge wu dui HL-7702xi bao de du xing jiao ruo ,xi bao cun huo lv jun bu di yu 90%,ju you liang hao de sheng wu an quan xing ;ju chan chun guang zhao zu yu dui zhao zu xiang bi mo xian zhe cha yi ,biao ming chan chun guang zhao dui HL-7702xi bao ji ben mo ying xiang ;dang GO-MB/PF127fu ge wu nong du jie yu 050μg·mL-1shi ,dui SiHaxi bao de an du xing jiao di ;shi yong 660 nmhuo 808 nmguang fen bie zhao she hou ,GO-MB/PF127fu ge wu dui SiHaxi bao de sha shang xiao ying jiao jiang ,dui SiHaxi bao de sha shang lv da 53.3%、47.5%;lian ge 660 nmhe 808 nmguang zhao hou ,GO-MB/PF127fu ge wu dui SiHaxi bao de sha shang xiao ying xian zhe zeng jiang ,dui SiHaxi bao de sha shang lv da 76.4%,biao ming GO-MB/PF127fu ge wu shi xian le PDTlian ge PTTshuang mo shi sha shang SiHaxi bao ju xiao guo xian zhe ;ti wai 1O2cu mie ji shi yan jie guo biao ming guang zhao she GO-MB/PF127chan sheng de 1O2zai PDTzhong qi chong yao zuo yong ;AO/EBying guang ran se fa he liu shi xi bao shu jian ce jie guo biao ming ,GO-MB/PF127fu ge wu de PDT/PTTdui SiHaxi bao de sha shang xiao ying zhu yao tong guo you dao xi bao diao wang shi xian 。jie lun :cai yong bao mo shui hua fa cheng gong zhi bei GO-MB/PF127fu ge wu ,fang fa jian chan 、yi cao zuo ,jiao hao de jie jue le GO-MBfu ge wu de tuan ju wen ti ,ju zhi bei de GO-MB/PF127fu ge wu ju you liang hao de guang re zhuai huan neng li 、ke you xiao chan sheng chan xian tai yang 。yu chan du de PDThuo PTTxiang bi ,GO-MB/PF127fu ge wu yong yu PDT/PTTdui SiHaxi bao de sha shang xiao ying geng xian zhe ,ji tong guo you dao xi bao diao wang sha shang SiHaxi bao 。yin ci ,GO-MB/PF127fu ge wu zai ai zheng lian ge zhi liao fang mian you hen da qian li 。

论文参考文献

  • [1].多功能纳米粒子的制备及在光动力/光热肿瘤治疗中的应用[D]. 覃静蕾.中央民族大学2019
  • [2].光激活纳米递送系统用于肿瘤光动力和基因联合治疗[D]. 王金慧.苏州大学2018
  • [3].纤维素基/卟啉光敏材料的制备及其抗菌性能[D]. 董建成.江南大学2019
  • [4].新型多孔有机材料的合成、表征及光动力杀菌与选择性吸附MB的研究[D]. 柳婷婷.山东大学2018
  • [5].基于酞菁的自组装光动力纳米点的抗肿瘤作用研究[D]. 贾玉华.福建农林大学2018
  • [6].共暴露(001)和(110)面BiOCl的可控合成及其光动力杀灭人肝癌HepG2细胞的研究[D]. 梁二丽.太原理工大学2018
  • [7].叶绿素衍生物的合成及其初步光动力抗肿瘤作用研究[D]. 杨君.东华大学2008
  • [8].光动力增效剂联合FECH-siRNA提高卵巢癌细胞的荧光成像灵敏度研究[D]. 麦浩山.暨南大学2014
  • [9].硅酞菁染料的合成及其在光动力疗法中的应用[D]. 李明乐.大连理工大学2015
  • [10].自噬参与光动力诱导的人乳腺癌细胞死亡的体外研究[D]. 朱江.重庆医科大学2016
  • 读者推荐
  • [1].氧化石墨烯气敏材料制备及在有毒有害气体检测中的应用[D]. 杨建召.西南科技大学2019
  • [2].还原氧化石墨烯在肿瘤联合治疗中的应用[D]. 马维倩.东北师范大学2018
  • [3].石墨烯复合材料的制备及其光热转换性能研究[D]. 王刚.湖北大学2018
  • [4].复合型氧化石墨烯纳米载体对肝癌模型的化学—光热联合治疗[D]. 张溪之.湖南大学2017
  • [5].近红外光介导的石墨烯基复合药物的构建及其抗癌效应研究[D]. 朱安妮.电子科技大学2015
  • [6].黄芪当归汤结合莫沙必利治疗气血亏虚型老年功能性便秘的临床研究[D]. 张弦.湖北中医药大学2010
  • [7].瞬态表面超高温传感器技术研究[D]. 崔婷.中北大学2010
  • [8].三相PWM整流器的研究[D]. 张伟.黑龙江科技学院2008
  • [9].我国大学生就业中的政府责任研究[D]. 孙晓丽.中国石油大学2009
  • [10].纳米普鲁士蓝类化合物的制备及催化性能研究[D]. 陈建发.南京理工大学2010
  • 论文详细介绍

    论文作者分别是来自山西医科大学的马敏,发表于刊物山西医科大学2019-08-12论文,是一篇关于复合物论文,薄膜水化法论文,光动力论文,光热论文,宫颈癌细胞论文,抗癌效应论文,山西医科大学2019-08-12论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自山西医科大学2019-08-12论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。

    标签:;  ;  ;  ;  ;  ;  ;  

    马敏:氧化石墨烯-亚甲蓝/普朗尼克复合物的制备及其光动力/光热抗癌效应研究论文
    下载Doc文档

    猜你喜欢