导读:本文包含了类内分块论文开题报告文献综述及选题提纲参考文献,主要关键词:加权分块图像,类间,类内,主成分分析
类内分块论文文献综述
施志刚[1](2014)在《一种基于类间类内双权重图像分块PCA的人脸识别技术》一文中研究指出提出一种将加权分块图像和主成分分析(PCA)相结合的人脸识别方法.该方法首先根据同类训练样本的平均图像与所有训练样本平均图像的距离以及类内训练样本图像与该类平均图像的距离,分别定义类间和类内图像加权函数,以获得每个训练样本图像的权重;然后将训练样本图像分块,构建所有同位置加权分块图像空间;接着基于新的样本空间对所有同位置图像分别采用PCA方法提取特征;最后用最近邻分类器实现模式分类.实验结果显示该方法较普通MPCA方法有效提高了识别率.(本文来源于《杭州师范大学学报(自然科学版)》期刊2014年01期)
龚婷,胡同森,田贤忠[2](2009)在《基于类内分块PCA方法的人脸表情识别》一文中研究指出主成分分析方法(PCA)是目前广泛应用在人脸等图像识别领域的重要手段。为了更准确地识别人脸的表情信息,有效抽取出图像中对表情识别贡献较大的局部特征,提出了一种类内分块PCA方法对人脸表情进行特征提取。首先对图像进行分块,再对分块得到的所有子图像块利用PCA方法进行鉴别分析,并计算出各类训练样本的子空间,然后计算测试样本到各类子空间的距离,最后输入最近邻分类器得到分类结果。在JAFFE人脸表情库上进行的实验结果表明,使用该方法后获得的识别率优于传统的PCA方法。(本文来源于《机电工程》期刊2009年07期)
类内分块论文开题报告
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
主成分分析方法(PCA)是目前广泛应用在人脸等图像识别领域的重要手段。为了更准确地识别人脸的表情信息,有效抽取出图像中对表情识别贡献较大的局部特征,提出了一种类内分块PCA方法对人脸表情进行特征提取。首先对图像进行分块,再对分块得到的所有子图像块利用PCA方法进行鉴别分析,并计算出各类训练样本的子空间,然后计算测试样本到各类子空间的距离,最后输入最近邻分类器得到分类结果。在JAFFE人脸表情库上进行的实验结果表明,使用该方法后获得的识别率优于传统的PCA方法。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
类内分块论文参考文献
[1].施志刚.一种基于类间类内双权重图像分块PCA的人脸识别技术[J].杭州师范大学学报(自然科学版).2014
[2].龚婷,胡同森,田贤忠.基于类内分块PCA方法的人脸表情识别[J].机电工程.2009