本文主要研究内容
作者(2019)在《Perylene Diimide Based Isomeric Conjugated Polymers as Efficient Electron Acceptors for All-polymer Solar Cells》一文中研究指出:We present here a series of perylene diimide(PDI)based isomeric conjugated polymers for the application as efficient electron acceptors in all-polymer solar cells(all-PSCs).By copolymerizing PDI monomers with 1,4-diethynylbenzene(para-linkage)and 1,3-diethynylbenzene(meta-linkage),isomeric PDI based conjugated polymers with parallel and non-parallel PDI units inside backbones were obtained.It was found that para-linked conjugated polymer(PA)showed better solubility,strongerπ-πstacking,more favorable blend morphology,and better photovoltaic performance than those of meta-linked conjugated polymers(PM)did.Device based on PTB7-Th:PA(PTB7-Th:poly{4,8-bis[5-(2-ethylhexyl)-thiophen-2-yl]benzo[1,2-b:4,5-b’]dithiophene-2,6-diyl-alt-3-fluoro-2-[(2-ethylhexyl)-carbonyl]thieno[3,4-b]thiophene-4,6-diyl})showed significantly enhanced photovoltaic performance than that of PTB7-Th:MA(3.29%versus 0.92%).Moreover,the photovoltaic performance of these polymeric acceptors could be further improved via a terpolymeric strategy.By copolymerizing a small amount of meta-linkages into PA,the optimized terpolymeric acceptors enabled to enhance photovoltaic performance with improved the short-circuit current density(Jsc)and fill factor(FF),resulting in an improved power conversion efficiency(PCE)of 4.03%.
Abstract
We present here a series of perylene diimide(PDI)based isomeric conjugated polymers for the application as efficient electron acceptors in all-polymer solar cells(all-PSCs).By copolymerizing PDI monomers with 1,4-diethynylbenzene(para-linkage)and 1,3-diethynylbenzene(meta-linkage),isomeric PDI based conjugated polymers with parallel and non-parallel PDI units inside backbones were obtained.It was found that para-linked conjugated polymer(PA)showed better solubility,strongerπ-πstacking,more favorable blend morphology,and better photovoltaic performance than those of meta-linked conjugated polymers(PM)did.Device based on PTB7-Th:PA(PTB7-Th:poly{4,8-bis[5-(2-ethylhexyl)-thiophen-2-yl]benzo[1,2-b:4,5-b’]dithiophene-2,6-diyl-alt-3-fluoro-2-[(2-ethylhexyl)-carbonyl]thieno[3,4-b]thiophene-4,6-diyl})showed significantly enhanced photovoltaic performance than that of PTB7-Th:MA(3.29%versus 0.92%).Moreover,the photovoltaic performance of these polymeric acceptors could be further improved via a terpolymeric strategy.By copolymerizing a small amount of meta-linkages into PA,the optimized terpolymeric acceptors enabled to enhance photovoltaic performance with improved the short-circuit current density(Jsc)and fill factor(FF),resulting in an improved power conversion efficiency(PCE)of 4.03%.
论文参考文献
论文详细介绍
论文作者分别是来自Chinese Journal of Polymer Science的,发表于刊物Chinese Journal of Polymer Science2019年01期论文,是一篇关于,Chinese Journal of Polymer Science2019年01期论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自Chinese Journal of Polymer Science2019年01期论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。