局部主元分析论文-邓佳伟,邓晓刚,曹玉苹,张晓玲

局部主元分析论文-邓佳伟,邓晓刚,曹玉苹,张晓玲

导读:本文包含了局部主元分析论文开题报告文献综述及选题提纲参考文献,主要关键词:化工过程,微小故障,核主元分析,统计局部方法

局部主元分析论文文献综述

邓佳伟,邓晓刚,曹玉苹,张晓玲[1](2019)在《基于加权统计局部核主元分析的非线性化工过程微小故障诊断方法》一文中研究指出传统统计局部核主元分析(statistical local kernel principal component analysis, SLKPCA)在构造改进残差时未考虑样本的差异性,使得故障样本信息易于被其他样本所掩盖,针对该问题,提出一种基于加权统计局部核主元分析(weighted statistical local kernel principal component analysis, WSLKPCA)的非线性化工过程微小故障诊断方法。该方法首先利用KPCA获取过程的得分向量和特征值并构建初始残差。然后设计了一种基于测试样本与训练样本之间距离的加权策略构建加权改进残差,对含有较强微小故障信息的样本赋予较大权值,以增强故障样本的影响。最后,采用基于测量变量与监控统计量之间的加权互信息构建贡献图以识别故障源变量。在连续搅拌反应釜和田纳西伊斯曼(Tennessee Eastman, TE)化工过程上的仿真结果表明,所提方法具有良好的微小故障检测与识别性能。(本文来源于《化工学报》期刊2019年07期)

张成,郭青秀,冯立伟,李元[2](2018)在《基于局部近邻标准化和动态主元分析的故障检测策略》一文中研究指出针对工业过程的动态和多模态特性,提出一种基于局部近邻标准化(LNS)和动态主元分析(DPCA)相结合的故障检测方法(LNS-DPCA)。首先,在训练数据集中寻找样本的K近邻集;然后,应用K近邻集的均值与标准差对当前样本进行标准化处理;最后,在新的数据集中应用DPCA方法确定T~2和SPE控制限进行故障检测。LNS方法能够消除过程的多模态特征,使得标准化后数据近似服从多元高斯分布,且保持过程离群点偏离正常样本轨迹;而结合DPCA方法则能够提高对具有动态特性过程的监视性能。利用数值例子和青霉素发酵过程进行仿真,并将测试结果与主元分析法(PCA)、DPCA、K近邻故障检测(FD-KNN)等方法进行对比分析,验证了LNS-DPCA方法的有效性。(本文来源于《计算机应用》期刊2018年09期)

韩志艳,王健[3](2016)在《基于局部保持投影和主元分析的语音情感识别》一文中研究指出为了提高情感识别的准确性,该文以语音信号为研究对象,提出了一种新型的语音情感识别方法.将局部保持投影算法(LPP)的思想融入到主元分析(PCA)的目标函数中,使得在原始变量空间投影到低维空间的过程中,不仅实现了整体方差的最大化,而且保持了局部近邻结构不变,有利于全局和局部特征的全面提取,克服了传统PCA方法只关注全局结构特征而忽略局部特征的缺陷.对比实验结果验证了该方法的可行性和有效性,实现了对喜悦、愤怒、悲伤、恐惧和中性5种人类基本情感的识别,研究成果将为情感识别提供新的研究方法,促进人机交互系统进一步深入发展.(本文来源于《计算机系统应用》期刊2016年10期)

刘晶,薛定宇,崔建江,贾旭[4](2012)在《基于核主元分析和局部保持投影的手背静脉识别》一文中研究指出为了保持手背静脉空间的局部结构,运用局部保持投影(LPP)方法进行手背静脉识别.但是对于小样本图像识别,LPP中的特征方程矩阵通常存在奇异性.为了解决这个问题,提出首先利用核主元分析(KPCA)降低手背静脉空间的维数,再对低维图像应用LPP提取局部特征.对已有手背静脉图像库进行测试,实验结果表明,与传统的PCA和PCA+LPP相比,该方法大大提高了系统的识别率,而且特征提取时间为2.6 s,满足实时系统的要求.(本文来源于《东北大学学报(自然科学版)》期刊2012年05期)

陈晓华,李春芝,蒋云良[5](2009)在《小波重构与局部DCT的二维主元分析掌纹识别》一文中研究指出为了解决掌纹特征提取过程中,手掌的非平面问题导致的伪主线噪音信息并简化运算,对重构的掌纹图像进行了局部离散余弦变换.解决了重构后图像噪音敏感性问题,有效地区分了掌纹主线、掌纹褶纹和乳突纹.由二维主元分析算法获得较稳健的识别特征.通过香港理工大学公布的PolyU掌纹数据库的实验,同二维主元分析算法相比,小波重构与局部离散余弦变换的2DPCA掌纹识别算法正确识别率较高,识别效率较高.(本文来源于《光子学报》期刊2009年06期)

刘文超,陈艳红,陈力[6](2006)在《局部二维主元分析的人脸识别新方法》一文中研究指出人脸姿态、表情、光照等变化是影响人脸识别的主要因素,如何减轻这些因素对识别率的影响是人脸识别的研究关键所在。R.G等人提出了MPCA方法,通过对人脸图像进行一次分块处理,减少了这些因素产生的影响。然而MPCA方法只消除了部分影响,仍未能完全解决这一问题。文章提出了一种进行二次分块处理的新方法——局部二维主元分析方法,进一步消除了这些因素所产生的影响。通过在Yale国际标准人脸库及UMIST人脸库上进行验证,该方法大大提高了人脸识别率。(本文来源于《计算机工程与应用》期刊2006年24期)

局部主元分析论文开题报告

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

针对工业过程的动态和多模态特性,提出一种基于局部近邻标准化(LNS)和动态主元分析(DPCA)相结合的故障检测方法(LNS-DPCA)。首先,在训练数据集中寻找样本的K近邻集;然后,应用K近邻集的均值与标准差对当前样本进行标准化处理;最后,在新的数据集中应用DPCA方法确定T~2和SPE控制限进行故障检测。LNS方法能够消除过程的多模态特征,使得标准化后数据近似服从多元高斯分布,且保持过程离群点偏离正常样本轨迹;而结合DPCA方法则能够提高对具有动态特性过程的监视性能。利用数值例子和青霉素发酵过程进行仿真,并将测试结果与主元分析法(PCA)、DPCA、K近邻故障检测(FD-KNN)等方法进行对比分析,验证了LNS-DPCA方法的有效性。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

局部主元分析论文参考文献

[1].邓佳伟,邓晓刚,曹玉苹,张晓玲.基于加权统计局部核主元分析的非线性化工过程微小故障诊断方法[J].化工学报.2019

[2].张成,郭青秀,冯立伟,李元.基于局部近邻标准化和动态主元分析的故障检测策略[J].计算机应用.2018

[3].韩志艳,王健.基于局部保持投影和主元分析的语音情感识别[J].计算机系统应用.2016

[4].刘晶,薛定宇,崔建江,贾旭.基于核主元分析和局部保持投影的手背静脉识别[J].东北大学学报(自然科学版).2012

[5].陈晓华,李春芝,蒋云良.小波重构与局部DCT的二维主元分析掌纹识别[J].光子学报.2009

[6].刘文超,陈艳红,陈力.局部二维主元分析的人脸识别新方法[J].计算机工程与应用.2006

标签:;  ;  ;  ;  

局部主元分析论文-邓佳伟,邓晓刚,曹玉苹,张晓玲
下载Doc文档

猜你喜欢