本文主要研究内容
作者(2019)在《Atomic-layer-deposited (ALD) Al2O3passivation dependent interface chemistry, band alignment and electrical properties of HfYO/Si gate stacks》一文中研究指出:In this work, the effects of atomic-layer-deposited(ALD) Al2O3 passivation layers with different thicknesses on the interface chemistry and electrical properties of sputtering-derived HfYO gate dielectrics on Si substrates have been investigated. The results of electrical measurements and X-ray photoelectron sepectroscopy(XPS) showed that 1-nm-thick Al2O3 passivation layer is optimized to obtain excellent electrical and interfacial properties for HfYO/Si gate stack. Then, the metal-oxide-semiconductor capacitors with HfYO/1-nm Al2O3/Si/Al gate stack were fabricated and annealed at different temperatures in forming gas(95% N2+5% H2). Capacitance-voltage(C-V) and current density-voltage(J-V) characteristics showed that the 250℃-annealed HYO high-k gate dielectric thin film demonstrated the lowest border trapped oxide charge density(-3.3 × 1010cm-2), smallest gate-leakage current(2.45 × 10-6A/cm2 at 2 V)compared with other samples. Moreover, the annealing temperature dependent leakage current conduction mechanism for Al/HfYO/Al2O3/Si/Al MOS capacitor has been investigated systematically. Detailed electrical measurements reveal that Poole-Frenkle emission is the main dominant emission in the region of low and medium electric fields while direct tunneling is dominant conduction mechanism at high electric fields.
Abstract
In this work, the effects of atomic-layer-deposited(ALD) Al2O3 passivation layers with different thicknesses on the interface chemistry and electrical properties of sputtering-derived HfYO gate dielectrics on Si substrates have been investigated. The results of electrical measurements and X-ray photoelectron sepectroscopy(XPS) showed that 1-nm-thick Al2O3 passivation layer is optimized to obtain excellent electrical and interfacial properties for HfYO/Si gate stack. Then, the metal-oxide-semiconductor capacitors with HfYO/1-nm Al2O3/Si/Al gate stack were fabricated and annealed at different temperatures in forming gas(95% N2+5% H2). Capacitance-voltage(C-V) and current density-voltage(J-V) characteristics showed that the 250℃-annealed HYO high-k gate dielectric thin film demonstrated the lowest border trapped oxide charge density(-3.3 × 1010cm-2), smallest gate-leakage current(2.45 × 10-6A/cm2 at 2 V)compared with other samples. Moreover, the annealing temperature dependent leakage current conduction mechanism for Al/HfYO/Al2O3/Si/Al MOS capacitor has been investigated systematically. Detailed electrical measurements reveal that Poole-Frenkle emission is the main dominant emission in the region of low and medium electric fields while direct tunneling is dominant conduction mechanism at high electric fields.
论文参考文献
论文详细介绍
论文作者分别是来自Journal of Materials Science & Technology的,发表于刊物Journal of Materials Science & Technology2019年05期论文,是一篇关于,Journal of Materials Science & Technology2019年05期论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自Journal of Materials Science & Technology2019年05期论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。