本文主要研究内容
作者麻根旺(2019)在《金属纳米颗粒掺混纳米金刚石膜场发射性能研究》一文中研究指出:金刚石具有负电子亲和势(NEA),可以在冷阴极器件中充当电子发射源,但是金刚石本身接近于绝缘,不利于膜内电子在导带中进行连续的迁移,金属掺杂技术有望提高其场发射性能。本实验采用电泳沉积的方法在钛基体上沉积不同浓度的Ti、Ag和Ni金属掺杂金刚石膜,并在800℃氮气气氛中退火10 min,制备得到了金属纳米粒子掺杂金刚石复合膜。利用扫描电子显微镜、X射线衍射光谱和拉曼光谱观察分析复合膜膜层的形貌和结构,并且采用霍尔效应测试仪和太原理工大学超硬材料实验室自主搭建的场发射性能测试仪对复合膜进行电学和场发射性能的表征,研究金刚石膜场发射性能随金属纳米颗粒的掺杂浓度的变化及增强机理。实验具体结果如下:(1)未进行掺杂和退火处理的金刚石薄膜,由于金刚石材料本身电阻率很高,接近于绝缘,其电学性能和场发射性能并不理想。在掺入2.5 mg、5 mg、7.5 mg、10 mg和12.5 mg的Ti金属纳米粒子后,Ti纳米粒子、纳米金刚石和基体钛之间形成Ti-TiC-diamond-TiC-Ti的网状导电通道,在掺杂含量为5 mg时材料开启电场(E0)低至3.04 V/μm,且在3.69 V/μm的电场强度下可以得到15.54μA/cm2的场发射电流密度,F-N曲线的斜率的绝对值数值急剧减小,达到18,场发射性能得到了极大增强;但是随着掺杂含量的进一步提升,样品表面生成大量TiC,覆盖了部分金刚石材料,使得样品表面发射点减少,场发射性能反而减弱,在含量为12.5 mg时达到最低。但是材料的电学性能却随着掺杂含量的提升而明显增强,在12.5mg掺杂含量下,材料表面电阻率低至1.041×10-2Ω?cm-2,载流子浓度高达8.254×10144 cm-3,霍尔迁移率达到1.125×103cm2V-1s-1,这表明材料表面的TiC含量随掺杂含量的提升而增加。(2)利用电泳沉积的方法在金刚石膜中掺入2.5 mg、5 mg、7.5 mg、10 mg和12.5 mg的Ag金属纳米粒子后,其电学性能和场发射性能呈现先增加后减弱的趋势,在掺杂含量为7.5 mg时金刚石膜的电学性能和场发射性能达到最佳,材料表面电阻率低至9.851×10-2Ω?cm-2,载流子浓度高达4.598×10144 cm-3,霍尔迁移率达到4.125×102cm2V-1s-1;其开启电场(E0)低至1.55 V/μm,在1.96 V/μm的电场强度下可以得到22.69μA/cm2的场发射电流密度,且其F-N曲线斜率的绝对值达到最低为14。造成这种现象的原因是金属Ag为电阴性的金属,可以与金刚石材料形成良好的欧姆接触,增加了电子发射源和导电通道;Ag由于功函数比金刚石低且与金刚石材料中sp3C-C介电常数不同,可以在Ag-Diamond界面处出现接触电场和引起场增强效应,从而使电子更加容易从金刚石表面发射出来;Ag纳米颗粒的掺杂导致尖端凸起数量增加,减小材料表面电子发射难度。但是随着金属Ag纳米颗粒继续掺入后,样品表面部分金刚石被覆盖及银纳米颗粒出现团聚现象,导致金刚石与Ag颗粒形成类似于Schottky势垒的异质结合及表面尖端凸起数量减少,这样极大的增加了电子发射难度致使样品的电学和场发射性能进一步降低。(3)在金刚石膜内掺入2.5 mg、5 mg、7.5 mg、10 mg和12.5 mg的Ni金属纳米粒子后,样品的电学性能和场发射性能先增强后降低。在掺杂含量为5 mg时达到最佳,材料表面电阻率低至1.026×10-2Ω?cm-2,载流子浓度高达8.986×10155 cm-3,霍尔迁移率达到9.911×102cm2V-1s-1;其开启电场(E0)低至1.38 V/μm,且在只有2.94 V/μm的电场强度下便可以获得1323.47μA/cm2的稳定的发射电流,F-N曲线斜率的绝对值达到6。适量的掺杂时,金属Ni颗粒会起到导电通道、电子源和增强表面尖端凸起的作用,使得材料电学性能和场发射性能极大增强。除此之外,金属Ni可以催化金刚石中的sp3碳使其形成导电性极佳的sp2碳,并且在经过800℃、N2气氛中热处理之后,金属镍催化金刚石膜中无序的石墨或非晶碳相向有序化石墨转变,形成具有极佳导电能力的纳米晶粒尺寸的纳米石墨相,极大提升膜内电子传输效率,从而提升样品场发射性能。随着过量的Ni纳米颗粒掺杂,由团聚导致表面尖端凸起减少和催化效果减弱降低了样品的电学性能和场发射性能。
Abstract
jin gang dan ju you fu dian zi qin he shi (NEA),ke yi zai leng yin ji qi jian zhong chong dang dian zi fa she yuan ,dan shi jin gang dan ben shen jie jin yu jue yuan ,bu li yu mo nei dian zi zai dao dai zhong jin hang lian xu de qian yi ,jin shu can za ji shu you wang di gao ji chang fa she xing neng 。ben shi yan cai yong dian yong chen ji de fang fa zai tai ji ti shang chen ji bu tong nong du de Ti、Aghe Nijin shu can za jin gang dan mo ,bing zai 800℃dan qi qi fen zhong tui huo 10 min,zhi bei de dao le jin shu na mi li zi can za jin gang dan fu ge mo 。li yong sao miao dian zi xian wei jing 、Xshe xian yan she guang pu he la man guang pu guan cha fen xi fu ge mo mo ceng de xing mao he jie gou ,bing ju cai yong huo er xiao ying ce shi yi he tai yuan li gong da xue chao ying cai liao shi yan shi zi zhu da jian de chang fa she xing neng ce shi yi dui fu ge mo jin hang dian xue he chang fa she xing neng de biao zheng ,yan jiu jin gang dan mo chang fa she xing neng sui jin shu na mi ke li de can za nong du de bian hua ji zeng jiang ji li 。shi yan ju ti jie guo ru xia :(1)wei jin hang can za he tui huo chu li de jin gang dan bao mo ,you yu jin gang dan cai liao ben shen dian zu lv hen gao ,jie jin yu jue yuan ,ji dian xue xing neng he chang fa she xing neng bing bu li xiang 。zai can ru 2.5 mg、5 mg、7.5 mg、10 mghe 12.5 mgde Tijin shu na mi li zi hou ,Tina mi li zi 、na mi jin gang dan he ji ti tai zhi jian xing cheng Ti-TiC-diamond-TiC-Tide wang zhuang dao dian tong dao ,zai can za han liang wei 5 mgshi cai liao kai qi dian chang (E0)di zhi 3.04 V/μm,ju zai 3.69 V/μmde dian chang jiang du xia ke yi de dao 15.54μA/cm2de chang fa she dian liu mi du ,F-Nqu xian de xie lv de jue dui zhi shu zhi ji ju jian xiao ,da dao 18,chang fa she xing neng de dao le ji da zeng jiang ;dan shi sui zhao can za han liang de jin yi bu di sheng ,yang pin biao mian sheng cheng da liang TiC,fu gai le bu fen jin gang dan cai liao ,shi de yang pin biao mian fa she dian jian shao ,chang fa she xing neng fan er jian ruo ,zai han liang wei 12.5 mgshi da dao zui di 。dan shi cai liao de dian xue xing neng que sui zhao can za han liang de di sheng er ming xian zeng jiang ,zai 12.5mgcan za han liang xia ,cai liao biao mian dian zu lv di zhi 1.041×10-2Ω?cm-2,zai liu zi nong du gao da 8.254×10144 cm-3,huo er qian yi lv da dao 1.125×103cm2V-1s-1,zhe biao ming cai liao biao mian de TiChan liang sui can za han liang de di sheng er zeng jia 。(2)li yong dian yong chen ji de fang fa zai jin gang dan mo zhong can ru 2.5 mg、5 mg、7.5 mg、10 mghe 12.5 mgde Agjin shu na mi li zi hou ,ji dian xue xing neng he chang fa she xing neng cheng xian xian zeng jia hou jian ruo de qu shi ,zai can za han liang wei 7.5 mgshi jin gang dan mo de dian xue xing neng he chang fa she xing neng da dao zui jia ,cai liao biao mian dian zu lv di zhi 9.851×10-2Ω?cm-2,zai liu zi nong du gao da 4.598×10144 cm-3,huo er qian yi lv da dao 4.125×102cm2V-1s-1;ji kai qi dian chang (E0)di zhi 1.55 V/μm,zai 1.96 V/μmde dian chang jiang du xia ke yi de dao 22.69μA/cm2de chang fa she dian liu mi du ,ju ji F-Nqu xian xie lv de jue dui zhi da dao zui di wei 14。zao cheng zhe chong xian xiang de yuan yin shi jin shu Agwei dian yin xing de jin shu ,ke yi yu jin gang dan cai liao xing cheng liang hao de ou mu jie chu ,zeng jia le dian zi fa she yuan he dao dian tong dao ;Agyou yu gong han shu bi jin gang dan di ju yu jin gang dan cai liao zhong sp3C-Cjie dian chang shu bu tong ,ke yi zai Ag-Diamondjie mian chu chu xian jie chu dian chang he yin qi chang zeng jiang xiao ying ,cong er shi dian zi geng jia rong yi cong jin gang dan biao mian fa she chu lai ;Agna mi ke li de can za dao zhi jian duan tu qi shu liang zeng jia ,jian xiao cai liao biao mian dian zi fa she nan du 。dan shi sui zhao jin shu Agna mi ke li ji xu can ru hou ,yang pin biao mian bu fen jin gang dan bei fu gai ji yin na mi ke li chu xian tuan ju xian xiang ,dao zhi jin gang dan yu Agke li xing cheng lei shi yu Schottkyshi lei de yi zhi jie ge ji biao mian jian duan tu qi shu liang jian shao ,zhe yang ji da de zeng jia le dian zi fa she nan du zhi shi yang pin de dian xue he chang fa she xing neng jin yi bu jiang di 。(3)zai jin gang dan mo nei can ru 2.5 mg、5 mg、7.5 mg、10 mghe 12.5 mgde Nijin shu na mi li zi hou ,yang pin de dian xue xing neng he chang fa she xing neng xian zeng jiang hou jiang di 。zai can za han liang wei 5 mgshi da dao zui jia ,cai liao biao mian dian zu lv di zhi 1.026×10-2Ω?cm-2,zai liu zi nong du gao da 8.986×10155 cm-3,huo er qian yi lv da dao 9.911×102cm2V-1s-1;ji kai qi dian chang (E0)di zhi 1.38 V/μm,ju zai zhi you 2.94 V/μmde dian chang jiang du xia bian ke yi huo de 1323.47μA/cm2de wen ding de fa she dian liu ,F-Nqu xian xie lv de jue dui zhi da dao 6。kuo liang de can za shi ,jin shu Nike li hui qi dao dao dian tong dao 、dian zi yuan he zeng jiang biao mian jian duan tu qi de zuo yong ,shi de cai liao dian xue xing neng he chang fa she xing neng ji da zeng jiang 。chu ci zhi wai ,jin shu Nike yi cui hua jin gang dan zhong de sp3tan shi ji xing cheng dao dian xing ji jia de sp2tan ,bing ju zai jing guo 800℃、N2qi fen zhong re chu li zhi hou ,jin shu nie cui hua jin gang dan mo zhong mo xu de dan mo huo fei jing tan xiang xiang you xu hua dan mo zhuai bian ,xing cheng ju you ji jia dao dian neng li de na mi jing li che cun de na mi dan mo xiang ,ji da di sheng mo nei dian zi chuan shu xiao lv ,cong er di sheng yang pin chang fa she xing neng 。sui zhao guo liang de Nina mi ke li can za ,you tuan ju dao zhi biao mian jian duan tu qi jian shao he cui hua xiao guo jian ruo jiang di le yang pin de dian xue xing neng he chang fa she xing neng 。
论文参考文献
论文详细介绍
论文作者分别是来自太原理工大学的麻根旺,发表于刊物太原理工大学2019-07-26论文,是一篇关于金刚石论文,金属纳米颗粒论文,场发射性能论文,太原理工大学2019-07-26论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自太原理工大学2019-07-26论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。
标签:金刚石论文; 金属纳米颗粒论文; 场发射性能论文; 太原理工大学2019-07-26论文;