黄燕霞:CsxPW11O39M(H2O)/TiO2纳米管复合材料的制备及可见光催化性能研究论文

黄燕霞:CsxPW11O39M(H2O)/TiO2纳米管复合材料的制备及可见光催化性能研究论文

本文主要研究内容

作者黄燕霞(2019)在《CsxPW11O39M(H2O)/TiO2纳米管复合材料的制备及可见光催化性能研究》一文中研究指出:利用光催化技术实现对废水中有机污染物的处理是解决能源危机和环境污染的有效方法。在光催化技术中由于无需消耗太阳能以外的其他能源,因此催化剂的作用至关重要。TiO2是应用最广泛的半导体光催化材料。由于TiO2的禁带宽度较大(3.2 eV),光生电子-空穴复合率较高导致其光能利用率以及量子效率均较低。通过半导体复合可以实现TiO2在提高光能利用率的同时促进光生载流子的分离,从而提高光催化效率。多金属氧酸盐(POM)具有强氧化还原性和类似半导体的光化学行为被证明是一类新颖高效的光催化剂。本文采用结构经典的Keggin型过渡金属取代杂多酸盐(CsxPW11M,x=4,5)为可见光催化活性组分,采用水热法将不同过渡金属离子(Fe3+,Cu2+,Mn2+)取代的难溶性杂多酸盐Cs4PW11O39Fe(III)(H2O)[Cs4PW11Fe],Cs5PW11O39Cu(II)(H2O)[Cs5PW11Cu]和Cs5PW11O39Mn(II)(H2O)[Cs5PW11Mn]与TiO2复合,考虑到一维结构的纳米材料具有优良的电子传输能力,将TiO2的微观形貌调控为纳米管阵列(TNAs),通过可见光下对染料RhB的降解评价复合材料的光催化性能,实验结果如下:UV-vis DRS结果表明,CsxPW11M/TNAs复合材料的光吸收性能保留了其单一组分的优势,在紫外区和可见光区均有吸收,整体扩宽了材料的光吸收范围。SEM结果表明,经水热反应后,负载在TNAs上的CsxPW11M晶体尺寸由原先的微米级降低为纳米级。此外,CsxPW11M的晶体形貌与反应时间有关,适当的时间有利于CsxPW11M晶体在TNAs表面生长出尺寸均一,结构规整的形貌。复合材料CsxPW11M/TNAs在可见光下对RhB的降解实验中表现出了较高的光催化活性。其中:Cs4PW11Fe/TNAs在反应180 min后RhB的降解率为88.74%,反应4 h后COD值下降了66%;Cs5PW11Cu/TNAs在反应180 min后RhB的降解率为88.53%,反应4 h后COD值下降了24%;Cs5PW11Mn/TNAs在反应180 min后RhB的降解率为68.15%,反应4 h后COD值下降了33%。通过甲醇淬灭羟基自由基的实验探索了RhB降解的机理,结果表明RhB降解过程中产生了具有强氧化性的羟基自由基,加速了RhB的氧化。此外,探索了不同的实验条件对RhB降解的影响,结果表明提高CsxPW11M的负载量和反应体系的酸度均有利于RhB的光催化降解。循环降解实验结果表明,CsxPW11M/TNAs复合材料具有良好的光催化稳定性。

Abstract

li yong guang cui hua ji shu shi xian dui fei shui zhong you ji wu ran wu de chu li shi jie jue neng yuan wei ji he huan jing wu ran de you xiao fang fa 。zai guang cui hua ji shu zhong you yu mo xu xiao hao tai yang neng yi wai de ji ta neng yuan ,yin ci cui hua ji de zuo yong zhi guan chong yao 。TiO2shi ying yong zui an fan de ban dao ti guang cui hua cai liao 。you yu TiO2de jin dai kuan du jiao da (3.2 eV),guang sheng dian zi -kong xue fu ge lv jiao gao dao zhi ji guang neng li yong lv yi ji liang zi xiao lv jun jiao di 。tong guo ban dao ti fu ge ke yi shi xian TiO2zai di gao guang neng li yong lv de tong shi cu jin guang sheng zai liu zi de fen li ,cong er di gao guang cui hua xiao lv 。duo jin shu yang suan yan (POM)ju you jiang yang hua hai yuan xing he lei shi ban dao ti de guang hua xue hang wei bei zheng ming shi yi lei xin ying gao xiao de guang cui hua ji 。ben wen cai yong jie gou jing dian de Kegginxing guo du jin shu qu dai za duo suan yan (CsxPW11M,x=4,5)wei ke jian guang cui hua huo xing zu fen ,cai yong shui re fa jiang bu tong guo du jin shu li zi (Fe3+,Cu2+,Mn2+)qu dai de nan rong xing za duo suan yan Cs4PW11O39Fe(III)(H2O)[Cs4PW11Fe],Cs5PW11O39Cu(II)(H2O)[Cs5PW11Cu]he Cs5PW11O39Mn(II)(H2O)[Cs5PW11Mn]yu TiO2fu ge ,kao lv dao yi wei jie gou de na mi cai liao ju you you liang de dian zi chuan shu neng li ,jiang TiO2de wei guan xing mao diao kong wei na mi guan zhen lie (TNAs),tong guo ke jian guang xia dui ran liao RhBde jiang jie ping jia fu ge cai liao de guang cui hua xing neng ,shi yan jie guo ru xia :UV-vis DRSjie guo biao ming ,CsxPW11M/TNAsfu ge cai liao de guang xi shou xing neng bao liu le ji chan yi zu fen de you shi ,zai zi wai ou he ke jian guang ou jun you xi shou ,zheng ti kuo kuan le cai liao de guang xi shou fan wei 。SEMjie guo biao ming ,jing shui re fan ying hou ,fu zai zai TNAsshang de CsxPW11Mjing ti che cun you yuan xian de wei mi ji jiang di wei na mi ji 。ci wai ,CsxPW11Mde jing ti xing mao yu fan ying shi jian you guan ,kuo dang de shi jian you li yu CsxPW11Mjing ti zai TNAsbiao mian sheng chang chu che cun jun yi ,jie gou gui zheng de xing mao 。fu ge cai liao CsxPW11M/TNAszai ke jian guang xia dui RhBde jiang jie shi yan zhong biao xian chu le jiao gao de guang cui hua huo xing 。ji zhong :Cs4PW11Fe/TNAszai fan ying 180 minhou RhBde jiang jie lv wei 88.74%,fan ying 4 hhou CODzhi xia jiang le 66%;Cs5PW11Cu/TNAszai fan ying 180 minhou RhBde jiang jie lv wei 88.53%,fan ying 4 hhou CODzhi xia jiang le 24%;Cs5PW11Mn/TNAszai fan ying 180 minhou RhBde jiang jie lv wei 68.15%,fan ying 4 hhou CODzhi xia jiang le 33%。tong guo jia chun cui mie qiang ji zi you ji de shi yan tan suo le RhBjiang jie de ji li ,jie guo biao ming RhBjiang jie guo cheng zhong chan sheng le ju you jiang yang hua xing de qiang ji zi you ji ,jia su le RhBde yang hua 。ci wai ,tan suo le bu tong de shi yan tiao jian dui RhBjiang jie de ying xiang ,jie guo biao ming di gao CsxPW11Mde fu zai liang he fan ying ti ji de suan du jun you li yu RhBde guang cui hua jiang jie 。xun huan jiang jie shi yan jie guo biao ming ,CsxPW11M/TNAsfu ge cai liao ju you liang hao de guang cui hua wen ding xing 。

论文参考文献

  • [1].钴基卟啉配合物和复合材料光催化CO2还原研究[D]. 杨梓歆.云南师范大学2019
  • [2].过渡金属基MOFs材料的构筑及光电催化性能的研究[D]. 吴瑞娟.长春理工大学2019
  • [3].半导体—金属异质结构提高光催化有机合成性质研究[D]. 完颜永劲.厦门大学2018
  • [4].基于石墨相氮化碳复合材料的制备及其光催化性能研究[D]. 张晶.江南大学2019
  • [5].过渡金属取代的磷钼酸银盐及基于钒取代磷钨酸复合材料的制备和光催化性能研究[D]. 李云垒.西北大学2019
  • [6].基于过渡金属硫化物/碳化物助催化剂构建复合光催化体系及其性能研究[D]. 刘瑶瑶.西华师范大学2019
  • [7].花状钒酸铋的制备及其光催化性能研究[D]. 樊志斌.西北大学2019
  • [8].基于配位作用下过渡金属(Cu、Co、Ni)调控g-C3N4光催化性能研究[D]. 刘静杰.东华理工大学2019
  • [9].基于金属(Ag,K,Au)调控g-C3N4电子结构和光催化性能及机制研究[D]. 吴熙.东华理工大学2019
  • [10].卟啉/g-C3N4/多酸复合材料的制备及光催化制氢应用[D]. 路丽莎.河南大学2019
  • 读者推荐
  • [1].TiO2基纳米管复合材料的制备及其光电催化降解性能的研究[D]. 赵辉.青岛科技大学2019
  • [2].B/C/N掺杂的复合型光催化剂的制备及其降解性能的研究[D]. 潘鹏.青岛科技大学2019
  • [3].氮掺杂碳包覆的TiO2光催化材料的制备及其去除污染物的研究[D]. 陈晓.华中师范大学2019
  • [4].二氧化钛/金属有机骨架/氧化石墨烯复合材料的制备及其光催化性能研究[D]. 凌廉杰.北京交通大学2019
  • [5].TiO2/金属有机骨架复合材料的制备及其光催化性能研究[D]. 周贝贝.安徽工程大学2019
  • [6].稀土金属镧与杂多酸掺杂改性TiO2的制备及光催化性能[D]. 胡省义.华东理工大学2019
  • [7].镁合金表面Ni-P-TiO2化学复合镀层的制备及其性能研究[D]. 宋佳文.西安理工大学2019
  • [8].TiO2对锂硫电池正极材料改性研究[D]. 董鹏伟.西安理工大学2019
  • [9].理论研究TiO2纳米管染料敏化太阳能电池中的电子传输[D]. 高鑫.吉林大学2019
  • [10].TiO2纳米管/C/MnO2复合材料的制备及电化学性能研究[D]. 孟艳秋.哈尔滨工业大学2018
  • 论文详细介绍

    论文作者分别是来自海南师范大学的黄燕霞,发表于刊物海南师范大学2019-10-17论文,是一篇关于型过渡金属取代杂多酸盐论文,纳米管阵列论文,水热法论文,光催化论文,海南师范大学2019-10-17论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自海南师范大学2019-10-17论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。

    标签:;  ;  ;  ;  ;  

    黄燕霞:CsxPW11O39M(H2O)/TiO2纳米管复合材料的制备及可见光催化性能研究论文
    下载Doc文档

    猜你喜欢