本文主要研究内容
作者唐伟,陈鹏(2019)在《Dissipative Particle Dynamics Simulation on Bonding Reaction Between Surface Modified Nanoparticles》一文中研究指出:A simulation study was carried out by using dissipative particle dynamics(DPD) method to explore the effects of properties of coating chains, such as length, density, rigidity of polymer chains, as well as the distance between nanoparticles on bonding reaction of coating chains grafted onto nanoparticles. The results show that bonding ratios of coated chains strongly depend on the length and density of coating chains. For nanoparticles with different coating densities, the optimum chain length for bonding reaction are varied. The rigidity of coating chains exhibits vigorous effects on bonding reaction that highly depends on chain lengths. DPD simulation can be used to study the bonding reaction between coated nanoparticles, which may help experimental synthesis of nanocomposites with excellent properties.
Abstract
A simulation study was carried out by using dissipative particle dynamics(DPD) method to explore the effects of properties of coating chains, such as length, density, rigidity of polymer chains, as well as the distance between nanoparticles on bonding reaction of coating chains grafted onto nanoparticles. The results show that bonding ratios of coated chains strongly depend on the length and density of coating chains. For nanoparticles with different coating densities, the optimum chain length for bonding reaction are varied. The rigidity of coating chains exhibits vigorous effects on bonding reaction that highly depends on chain lengths. DPD simulation can be used to study the bonding reaction between coated nanoparticles, which may help experimental synthesis of nanocomposites with excellent properties.
论文参考文献
论文详细介绍
论文作者分别是来自Journal of Wuhan University of Technology(Materials Science)的唐伟,陈鹏,发表于刊物Journal of Wuhan University of Technology(Materials Science)2019年01期论文,是一篇关于,Journal of Wuhan University of Technology(Materials Science)2019年01期论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自Journal of Wuhan University of Technology(Materials Science)2019年01期论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。
标签:Journal of Wuhan University of Technology(Materials Science)2019年01期论文;