附加动量算法论文-李波,柳华桥,戴鑫,贾志强

附加动量算法论文-李波,柳华桥,戴鑫,贾志强

导读:本文包含了附加动量算法论文开题报告文献综述及选题提纲参考文献,主要关键词:沉降监测,BP神经网络,附加动量法

附加动量算法论文文献综述

李波,柳华桥,戴鑫,贾志强[1](2016)在《标准BP神经网络算法和附加动量法在沉降监测中的应用研究》一文中研究指出在沉降监测工程实践中,由于采用的预测方法和项目沉降趋势的不同,预测结果的精度会有差异。而随着应用的不断深入,对现有算法进行改进以发挥算法的优势,成为目前预测算法研究的主流。在本文的研究中,编程实现了标准BP神经网络算法和附加动量法。通过研究学习率对标准BP神经网络算法的影响,确定学习率的大小。然后,研究了动量项对附加动量法收敛速度的影响,确定了动量项的取值。最后,对两种算法的稳定性和算法的效率以及预测精度等方面进行比较,探究两种算法的特点。(本文来源于《城市勘测》期刊2016年01期)

孙瑜[2](2015)在《基于自适应学习率附加动量项的改进BP算法的Doherty功率放大器设计》一文中研究指出本文主要介绍采用BP神经网络的方法来设计Doherty功率放大器非线性模型。文中是从功率效率、输入功率与输出功率的关系两个方面来对Doherty功率放大器进行设计。BP神经网络结构简单,可操作性强,可以逼近任意的非线性映射关系,能够有效地解决非线性目标函数的逼近问题,在放大器建模方面得到了广泛应用。对于通常所说的传统BP神经网络模型,它把一组输入样本与输出样本之间的问题转变成一个非线性的优化问题,但是传统BP神经网络有着自身的缺陷,在功放设计应用中,网络输出的功率效率与输出功率无法达到实际功放的要求。针对传统BP神经网络的不足,本文采用附加动量项与自适应学习率相结合的改进BP神经网络方法来完成功率放大器的非线性模型设计。为构建更为准确神经网络模型,需要对改进的BP算法选择合适的参数,即要选择出合适的动量因子与学习率。学习率取值过大会引起网络震荡不稳定,取值过小虽然可以避免不稳定,但是增加了神经网络的训练时间。通过对网络的反复训练,我们发现当动量因子取值为0.9是可以有效地减缓网络的震荡趋势,同时采用自适应学习率的改进BP算法,当网络训练在过程中误差增大时减小学习率,当误差减小时增加学习率,利用其可以实时的调节学习率大小的优点,有效地加快了网络的收敛时间。神经网络的训练数据和测试数据均来自Doherty功率放大器的单音信号。将改进的BP神经网络方法与传统BP神经网络方法的误差收敛结果作比较,就收敛速度来讲,通过收敛曲线可以明显的看出改进的BP神经网络方法要比传统方法快得多;将两种方法的曲线拟合结果的误差也进行比较,结果表明使用改进BP神经网络方法曲线拟合精度要比传统BP神经网络方法更高。通过一系列的实验结果对比说明改进的BP神经网络方法得到更高精度的功放设计结果。(本文来源于《华东交通大学》期刊2015-06-30)

王树森,赵冬玲[3](2012)在《一种基于附加动量法的改进BP算法》一文中研究指出本文研究了基本BP算法的工作原理,分析了导致基本BP算法学习效率低的原因,提出了基于附加动量法的改进BP算法。经过理论分析和实验验证,在基本BP算法中加入附加动量的方法,可以加快BP神经网络的学习速度,提高BP神经网络的学习效率。(本文来源于《济源职业技术学院学报》期刊2012年03期)

唐勇,马卉宇,王益群[4](2008)在《附加奇数s的动量BP算法在动态流量软测量中的研究与应用》一文中研究指出针对BP算法收敛速度慢以及陷入平坦区的难题,提出了附加奇数s的动量BP算法.该方法在保证训练收敛和训练精度的情况下,通过降低计算量来提高计算速度节省计算时间,通过改进激发函数来增加梯度加快收敛速度.文中详细论证了算法的正确性,并通过实验验证了算法的性能,实验结果表明该算法比传统的附加动量BP算法节省了9.66%的时间,训练步数也减少了31.35%,比较好的适应于动态流量软测量中的实时性要求.(本文来源于《小型微型计算机系统》期刊2008年11期)

附加动量算法论文开题报告

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

本文主要介绍采用BP神经网络的方法来设计Doherty功率放大器非线性模型。文中是从功率效率、输入功率与输出功率的关系两个方面来对Doherty功率放大器进行设计。BP神经网络结构简单,可操作性强,可以逼近任意的非线性映射关系,能够有效地解决非线性目标函数的逼近问题,在放大器建模方面得到了广泛应用。对于通常所说的传统BP神经网络模型,它把一组输入样本与输出样本之间的问题转变成一个非线性的优化问题,但是传统BP神经网络有着自身的缺陷,在功放设计应用中,网络输出的功率效率与输出功率无法达到实际功放的要求。针对传统BP神经网络的不足,本文采用附加动量项与自适应学习率相结合的改进BP神经网络方法来完成功率放大器的非线性模型设计。为构建更为准确神经网络模型,需要对改进的BP算法选择合适的参数,即要选择出合适的动量因子与学习率。学习率取值过大会引起网络震荡不稳定,取值过小虽然可以避免不稳定,但是增加了神经网络的训练时间。通过对网络的反复训练,我们发现当动量因子取值为0.9是可以有效地减缓网络的震荡趋势,同时采用自适应学习率的改进BP算法,当网络训练在过程中误差增大时减小学习率,当误差减小时增加学习率,利用其可以实时的调节学习率大小的优点,有效地加快了网络的收敛时间。神经网络的训练数据和测试数据均来自Doherty功率放大器的单音信号。将改进的BP神经网络方法与传统BP神经网络方法的误差收敛结果作比较,就收敛速度来讲,通过收敛曲线可以明显的看出改进的BP神经网络方法要比传统方法快得多;将两种方法的曲线拟合结果的误差也进行比较,结果表明使用改进BP神经网络方法曲线拟合精度要比传统BP神经网络方法更高。通过一系列的实验结果对比说明改进的BP神经网络方法得到更高精度的功放设计结果。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

附加动量算法论文参考文献

[1].李波,柳华桥,戴鑫,贾志强.标准BP神经网络算法和附加动量法在沉降监测中的应用研究[J].城市勘测.2016

[2].孙瑜.基于自适应学习率附加动量项的改进BP算法的Doherty功率放大器设计[D].华东交通大学.2015

[3].王树森,赵冬玲.一种基于附加动量法的改进BP算法[J].济源职业技术学院学报.2012

[4].唐勇,马卉宇,王益群.附加奇数s的动量BP算法在动态流量软测量中的研究与应用[J].小型微型计算机系统.2008

标签:;  ;  ;  

附加动量算法论文-李波,柳华桥,戴鑫,贾志强
下载Doc文档

猜你喜欢