导读:本文包含了软计算集成论文开题报告文献综述及选题提纲参考文献,主要关键词:入侵检测,神经网络,支持向量机,软计算方法集成
软计算集成论文文献综述
徐小龙[1](2015)在《基于软计算集成的入侵检测技术》一文中研究指出软计算技术越来越广泛地应用于解决各领域的实际问题。文章将多种不同软计算技术的集成应用于入侵检测。由于网络攻击事件的日益增多,建立有效的入侵检测系统对保护信息安全是非常必要的,但要实现这一点仍面临巨大的挑战。分析了两种类型的软计算技术:人工神经网络和支持向量机。实验证明这两种方法的集成在入侵检测的检测精度方面要优于单一方法。(本文来源于《电子技术》期刊2015年07期)
于世为[2](2008)在《储层预测信息管理中软计算集成理论与方法研究》一文中研究指出当今,油气勘探开发得到了进一步发展,浅层和储集条件简单的区块得到了较为充分地勘探开发。随着石油勘探领域不断地向深层和储集条件复杂的区域进军,油气勘探活动越来越复杂,要求勘探技术水平必须相应地提高。今后油气开发的重点将是复杂油气储集层,一方面,复杂油气储集层具有非均匀性、非线性及不确定性的响应特征,显然,基于均匀线性理论的传统统计方法难以达到这种要求;另一方面,储层管理中涉及地震、测井、地质等海量数据,信息量大,来源多样,一般的信息管理技术难以及时而有效地处理。因此要提高储层描述的精度和可靠性,最大限度地挖掘和利用已有的地震与测井的信息,以适应复杂储层油气田勘探开发的要求,必须寻找新的信息管理技术来迎接油田勘探开发的新挑战。软计算作为一种智能技术,能充分利用不精确性、不确定性和部分真实的信息,具有易处理和鲁棒性的优点,能综合运用推理和搜索方法处理海量数据与信息问题,在复杂储层勘探开发信息管理中将发挥着重要作用。本文以国家自然科学基金项目“石油储层管理中的集成软计算的理论与方法研究(NO:70573101)”为基础,主要探讨了软计算集成技术在储层预测中的信息管理理论与实践问题。即如何有效集成软计算中的神经网络、模糊逻辑、智能优化算法(遗传算法、粒群算法)技术建立储层参数与地震信息之间的联系并提取相应规则。通过对地震属性优化、油井类型识别、储层参数横向预测、提取地震储层模糊规则,实现地震数据——参数信息——储层认识的动态过程。为此本文做了如下的工作:(1)探讨了软计算技术之间集成的一般原则与规律。在总结软计算技术研究发展概况的基础上,对软计算技术中的神经网络、模糊系统、进化算法两两之间,叁者之间集成的一般原则与规律,作了较为详细的分析与探讨。(2)提出了一种基于GA-BP的地震属性优化方法。采用GA二进制编码与BP神经网络集成的方法,对从复杂的地震记录中提取的各种地震信息,自适应地进行属性优化,即从全体地震属性集中挑选出与储层关系最密切、最能代表储层特征的地震属性子集,以降低信息冗余及多解性,提高了储层预测精度。(3)提出一种GA-FCM油井类型识别方法。集成遗传算法与模糊C均值分类方法,能根据井旁地震道属性与油井的含油气性(干井、低产井、高产井)关系来优化地震属性,得到与油井类别关系最强的少数地震属性,进行油井类型识别,不但识别率高,而且应用模糊隶属度,对识别结果具有较强的解释性。(4)建立了一种储层预测的动态全参数自适应BP神经网络模型。它将GA、SA与BP叁种算法有机地融合在一起,实现优势互补,采用二进制与实数混合编码,能动态地根据样本特征对BP网络中的输入节点数、隐层节点数、转移函数、权值与阈值等进行自适应优化调整。在保证精度的前提下,使网络的结构相对简单(较少的输入节点和隐层节点数),同时采用自适应交叉率、变异率与学习率,以增强网络的自适应能力与泛化能力,极大的减少人为主观因素对网络设计的影响。(5)改进了RBF网络最近邻中心学习算法。采用离散PSO优化方法,对最近邻中心学习算法进行了改进,解决了最近邻中心学习算法半径选择难、中心向量对样本输入次序依赖性强的不足。(6)提出了一种混合编码的MPSO-RBF学习方法。集成PSO与RBF技术,有效地解决了RBF中隐节点确定难问题,同时能全局地优化RBF网络参数(中心、宽度)与输出层权值,与现有RBF学习方法作了详细的对比研究,发现该方法学习后的RBF隐节点少,性能优越,并成功地应用于地震储层预测中。(7)提取地震储层模糊规则。根据优选后的地震属性,集成神经网络、模糊系统、进化计算,提出了一种GA-FNN网络,该模型物理意义明显,具有较高的透明度与可解释性,并成功应用于地震属性与储层厚度之间的模糊规则提取,形成专家决策知识。此外,为实现本文各种软计算集成方法,编写了大量的Matlab算法程序。本文研究成果和结论对软计算集成具有重要理论意义,对石油勘探、地震储层信息管理具有重要的指导意义与实用价值。(本文来源于《中国地质大学》期刊2008-03-01)
王攀[3](2007)在《科技创新中的方法集成及其范例——软计算方法集成》一文中研究指出本文面向科技创新,研究了方法集成的一些基本问题。给出了问题一方法空间的形式化描述;从哲学角度、方法论角度探讨了方法集成的理论基础;提出了方法集成的两个基本原则;从不同视角分析了方法集成的一个范例——软计算方法集成的分类及其元素之间集成的形式。(本文来源于《中国软科学》期刊2007年01期)
匡奕军[4](2006)在《最优参数设计问题的软计算集成方法研究》一文中研究指出最优参数设计是稳健性设计中的重要组成部分,是一个不断连续改进的过程。应用人工神经网络、遗传算法、模糊理论等软计算方法和指数功效函数对具有定性定量输出变量的参数优化设计问题进行了研究,并进行实证分析,表明了方法的可行性。(本文来源于《科技导报》期刊2006年09期)
丁永生,邵世煌,万庆萱[5](1996)在《元胞自动机与软计算的集成及其应用》一文中研究指出介绍了元胞自动机的思想来源和基本原理,对元胞自动机与敦计算的人工智能技术进行比较并加以集成,讨论了近年来它在混沌分形、图像处理、智能材料、机器学习、模拟复杂现象等领域中的应用成果,并对进一步研究进行展望。(本文来源于《控制与决策》期刊1996年06期)
软计算集成论文开题报告
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
当今,油气勘探开发得到了进一步发展,浅层和储集条件简单的区块得到了较为充分地勘探开发。随着石油勘探领域不断地向深层和储集条件复杂的区域进军,油气勘探活动越来越复杂,要求勘探技术水平必须相应地提高。今后油气开发的重点将是复杂油气储集层,一方面,复杂油气储集层具有非均匀性、非线性及不确定性的响应特征,显然,基于均匀线性理论的传统统计方法难以达到这种要求;另一方面,储层管理中涉及地震、测井、地质等海量数据,信息量大,来源多样,一般的信息管理技术难以及时而有效地处理。因此要提高储层描述的精度和可靠性,最大限度地挖掘和利用已有的地震与测井的信息,以适应复杂储层油气田勘探开发的要求,必须寻找新的信息管理技术来迎接油田勘探开发的新挑战。软计算作为一种智能技术,能充分利用不精确性、不确定性和部分真实的信息,具有易处理和鲁棒性的优点,能综合运用推理和搜索方法处理海量数据与信息问题,在复杂储层勘探开发信息管理中将发挥着重要作用。本文以国家自然科学基金项目“石油储层管理中的集成软计算的理论与方法研究(NO:70573101)”为基础,主要探讨了软计算集成技术在储层预测中的信息管理理论与实践问题。即如何有效集成软计算中的神经网络、模糊逻辑、智能优化算法(遗传算法、粒群算法)技术建立储层参数与地震信息之间的联系并提取相应规则。通过对地震属性优化、油井类型识别、储层参数横向预测、提取地震储层模糊规则,实现地震数据——参数信息——储层认识的动态过程。为此本文做了如下的工作:(1)探讨了软计算技术之间集成的一般原则与规律。在总结软计算技术研究发展概况的基础上,对软计算技术中的神经网络、模糊系统、进化算法两两之间,叁者之间集成的一般原则与规律,作了较为详细的分析与探讨。(2)提出了一种基于GA-BP的地震属性优化方法。采用GA二进制编码与BP神经网络集成的方法,对从复杂的地震记录中提取的各种地震信息,自适应地进行属性优化,即从全体地震属性集中挑选出与储层关系最密切、最能代表储层特征的地震属性子集,以降低信息冗余及多解性,提高了储层预测精度。(3)提出一种GA-FCM油井类型识别方法。集成遗传算法与模糊C均值分类方法,能根据井旁地震道属性与油井的含油气性(干井、低产井、高产井)关系来优化地震属性,得到与油井类别关系最强的少数地震属性,进行油井类型识别,不但识别率高,而且应用模糊隶属度,对识别结果具有较强的解释性。(4)建立了一种储层预测的动态全参数自适应BP神经网络模型。它将GA、SA与BP叁种算法有机地融合在一起,实现优势互补,采用二进制与实数混合编码,能动态地根据样本特征对BP网络中的输入节点数、隐层节点数、转移函数、权值与阈值等进行自适应优化调整。在保证精度的前提下,使网络的结构相对简单(较少的输入节点和隐层节点数),同时采用自适应交叉率、变异率与学习率,以增强网络的自适应能力与泛化能力,极大的减少人为主观因素对网络设计的影响。(5)改进了RBF网络最近邻中心学习算法。采用离散PSO优化方法,对最近邻中心学习算法进行了改进,解决了最近邻中心学习算法半径选择难、中心向量对样本输入次序依赖性强的不足。(6)提出了一种混合编码的MPSO-RBF学习方法。集成PSO与RBF技术,有效地解决了RBF中隐节点确定难问题,同时能全局地优化RBF网络参数(中心、宽度)与输出层权值,与现有RBF学习方法作了详细的对比研究,发现该方法学习后的RBF隐节点少,性能优越,并成功地应用于地震储层预测中。(7)提取地震储层模糊规则。根据优选后的地震属性,集成神经网络、模糊系统、进化计算,提出了一种GA-FNN网络,该模型物理意义明显,具有较高的透明度与可解释性,并成功应用于地震属性与储层厚度之间的模糊规则提取,形成专家决策知识。此外,为实现本文各种软计算集成方法,编写了大量的Matlab算法程序。本文研究成果和结论对软计算集成具有重要理论意义,对石油勘探、地震储层信息管理具有重要的指导意义与实用价值。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
软计算集成论文参考文献
[1].徐小龙.基于软计算集成的入侵检测技术[J].电子技术.2015
[2].于世为.储层预测信息管理中软计算集成理论与方法研究[D].中国地质大学.2008
[3].王攀.科技创新中的方法集成及其范例——软计算方法集成[J].中国软科学.2007
[4].匡奕军.最优参数设计问题的软计算集成方法研究[J].科技导报.2006
[5].丁永生,邵世煌,万庆萱.元胞自动机与软计算的集成及其应用[J].控制与决策.1996