论文统计数据p代表什么

论文统计数据p代表什么

问:论文数据表中t值和p值分别代表什么?
  1. 答:t值和P值都用来判断统计上是否显著的指标。p值就是拒绝原假设的最小alpha值,把统计量写出来,带进去算出来之后,根据统计量的分布来算p值。P值是用来判定假设检验结果的一个参数,也可以根据不同的分布使用分布的拒绝域进行比较。由R·A·Fisher首先提出。
    扩展资料:
    Fisher的具体做法是:
    假定某一参数的取值。
    选择一个检验统计量(例如z 统计量或Z 统计量) ,该统计量的分布在假定的参数取值为真时应该是完全已知的。
    从研究总体中抽取一个随机样本计算检验统计量的值计算概率P值或者说观测的显著水平,即在假设为真时的前提下,检验统计量大于或等于实际观测值的概率。
    如果P<0.01,说明是较强的判定结果,拒绝假定的参数取值。
    如果0.01<P值<0.05,说明较弱的判定结果,拒绝假定的参数取值。
    如果P值>0.05,说明结果更倾向于接受假定的参数取值。
  2. 答:t值和P值都用来判断统计上是否显著的指标。
    p值就是拒绝原假设的最小alpha值,把统计量写出来,带进去算出来之后,根据统计量的分布来算p值啊,举个例子,比如说算出来的统计量的值为z,服从的是正态分布,如果是双边检验的话那么pvalue=2*(1-probnorm(abs(Z)));单边检验的话,应该是1-probnorm(z)。
  3. 答:p就是显著性=sig
    F的值是回归方程的显著性检验,表示的是模型中被解释变量与所有解释变量之间的线性关系在总体上是否显著做出推断。若F>Fa(k-1,n-k),则拒绝原假设,即认为列入模型的各个解释变量联合起来对被解释变量有显著影响,反之,则无显著影响。
  4. 答:eviews中的关于相关度研究
    自变量对因变量的影响显著与否主要看P(Prob)值,一般而言P<0.05即可,当然有的研究p<0.1也是可以接受的。X1的P值为0.0001,X3的P值为0.0431,说明这两个变量对因变量影响显著
问:统计学中的“P”值是什么意思?怎么计算?
  1. 答:统计学中P一般指概率。
    以古典概率模型为例,概率的计算方法为:
    古典定义
    如果一个试验满足两条:
    (1)试验只有有限个基本结果;
    (2)试验的每个基本结果出现的可能性是一样的。
    这样的试验便是古典试验。
    对于古典试验中的事件A,它的概率定义为:P(A)= 
    其中n表示该试验中所有可能出现的基本结果的总数目。m表示事件A包含的试验基本结果数。
    这里,仅仅举例了简单的古典概率,其还有很多种模型。你可以找统计学的相关书籍进行学习。
    拓展内容:
    概率亦称“或然率”。它反映随机事件出现的可能性大小的量度。随机事件是指在相同条件下,可能出现也可能不出现的事件。例如,从一批有正品和次品的商品中,随意抽取一件,“抽得的是正品”就是一个随机事件。设对某一随机现象进行了n次试验与观察,其中A事件出现了m次,即其出现的频率为m/n。经过大量反复试验,常有m/n越来越接近于某个确定的常数。该常数即为事件A出现的概率,常用P (A) 表示,与“几率”不同,一个事件的几率(odds)是指该事件发生的概率与该事件不发生的概率的比值。
    参考资料:
  2. 答:P 值是反映某一事件发生的可能性大小,即概率。一般以P < 0.05 为显著, P <0.01 为非常显著。P(A)= 。n表示该试验中所有可能出现的基本结果的总数目。m表示事件A包含的试验基本结果数。
    与“几率”不同,一个事件的几率(odds)是指该事件发生的概率与该事件不发生的概率的比值。
    拓展资料:
    关于统计定义
    在一定条件下,重复做n次试验,nA为n次试验中事件A发生的次数,如果随着n逐渐增大,频率nA/n逐渐稳定在某一数值p附近,则数值p称为事件A在该条件下发生的概率,记做P(A)=p。这个定义成为概率的统计定义。
    在历史上,第一个对“当试验次数n逐渐增大,频率nA稳定在其概率p上”这一论断给以严格的意义和数学证明的是雅各布·伯努利(Jacob Bernoulli)。
    从概率的统计定义可以看到,数值p就是在该条件下刻画事件A发生可能性大小的一个数量指标。
    由于频率  总是介于0和1之间,从概率的统计定义可知,对任意事件A,皆有0≤P(A)≤1,P(Ω)=1,P(Φ)=0。其中Ω、Φ分别表示必然事件(在一定条件下必然发生的事件)和不可能事件(在一定条件下必然不发生的事件)。
    (参考资料:)
问:p值统计学意义是什么?
  1. 答:p值统计学意义是:
    结果真实程度(能够代表总体)的一种估计方法,专业上P 值为结果可信程度的一个递减指标,P 值越大,我们越不能认为样本中变量的关联是总体中各变量关联的可靠指标。
    如果P值很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由越充分。
    总之,P值越小,表明结果越显著。但是检验的结果究竟是“显著的”、“中度显著的”还是“高度显著的”需要我们自己根据P值的大小和实际问题来解决。
    扩展资料:
    选择一个检验统计量(例如z 统计量或Z 统计量),该统计量的分布在假定的参数取值为真时应该是完全已知的。
    从研究总体中抽取一个随机样本计算检验统计量的值计算概率P值或者说观测的显著水平,即在假设为真时的前提下,检验统计量大于或等于实际观测值的概率。
    如果P<0.01,说明是较强的判定结果,拒绝假定的参数取值;如果0.01<P值<0.05,说明较弱的判定结果,拒绝假定的参数取值;如果P值>0.05,说明结果更倾向于接受假定的参数取值。
  2. 答:p值统计学意义:结果真实程度(能够代表总体)的一种估计方法。
    P值(P value)就是当原假设为真时,比所得到的样本观察结果更极端的结果出现的概率。如果P值很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由越充分。总之,P值越小,表明结果越显著。但是检验的结果究竟是“显著的”、“中度显著的”还是“高度显著的”需要我们自己根据P值的大小和实际问题来解决。
    扩展资料:
    p值是指在一个概率模型中,统计摘要(如两组样本均值差)与实际观测数据相同,或甚至更大这一事件发生的概率。换言之,是检验假设零假设成立或表现更严重的可能性。p值若与选定显著性水平(0.05或0.01)相比更小,则零假设会被否定而不可接受。
    然而这并不直接表明原假设正确。p值是一个服从正态分布的随机变量,在实际使用中因样本等各种因素存在不确定性。产生的结果可能会带来争议。
论文统计数据p代表什么
下载Doc文档

猜你喜欢