论文回归结果怎么看

论文回归结果怎么看

问:回归分析的结果怎么看
  1. 答:可以使用在线spss平台SPSSAU进行分析,结果比较容易解读。
    B值:用于判断X对Y的影响关系方向及影响程度
    回归系数B值大于0说明正向影响,反之负向影响,以及通过B值大小对比X对Y的影响程度大小。
    P值:如果P<0.05,则说明具有影响关系,反之无影响关系。
    R方:用于判断模型情况
    VIF值:判断模型共线性问题
    F检验:用于判定是否X中至少有一个对Y产生影响,如果呈现出显著性,则说明所有X中至少一个会对Y产生影响关系。
    具体说明可查看spssau输出的智能文字分析结果。
  2. 答:首先来说明各个符号,B也就是beta,代表回归系数,标准化的回归系数代表自变量也就是预测变量和因变量的相关,为什么要标准化,因为标准化的时候各个自变量以及因变量的单位才能统一,使结果更精确,减少因为单位不同而造成的误差。T值就是对回归系数的t检验的结果,绝对值越大,sig就越小,sig代表t检验的显著性,在统计学上,sig<0.05一般被认为是系数检验显著,显著的意思就是你的回归系数的绝对值显著大于0,表明自变量可以有效预测因变量的变异,做出这个结论你有5%的可能会犯错误,即有95%的把握结论正确。
    回归的检验首先看anova那个表,也就是F检验,那个表代表的是对你进行回归的所有自变量的回归系数的一个总体检验,如果sig<0.05,说明至少有一个自变量能够有效预测因变量,这个在写数据分析结果时一般可以不报告
    然后看系数表,看标准化的回归系数是否显著,每个自变量都有一个对应的回归系数以及显著性检验
    最后看模型汇总那个表,R方叫做决定系数,他是自变量可以解释的变异量占因变量总变异量的比例,代表回归方程对因变量的解释程度,报告的时候报告调整后的R方,这个值是针对自变量的增多会不断增强预测力的一个矫正(因为即使没什么用的自变量,只要多增几个,R方也会变大,调整后的R方是对较多自变量的惩罚),R可以不用管,标准化的情况下R也是自变量和因变量的相关
  3. 答:在统计学中,回归分析指的是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。回归分析按照涉及的变量的多少,分为一元回归和多元回归分析;按照因变量的多少,可分为简单回归分析和多重回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。
    应答时间:2021-01-18,最新业务变化请以平安银行官网公布为准。
    [平安银行我知道]想要知道更多?快来看“平安银行我知道”吧~
问:SPSS回归分析结果该怎么解释,越详细越好
  1. 答:对模型整体情况进行分析:包括模型拟合情况(R²),是否通过F检验等。
    回归的检验首先看anova那个表,也就是F检验,那个表代表的是对你进行回归的所有自变量的回归系数的一个总体检验,如果sig<0.05,说明至少有一个自变量能够有效预测因变量,这个在写数据分析结果时一般可以不报告。
    分析X的显著性(P值),如果呈现出显著性,则说明X对Y有影响关系。如果不显著,则应剔除该变量。结合回归系数B值,对比分析X对Y的影响程度。B值为正数则说明X对Y有正向影响,为负数则说明有负向影响。
    回归分析研究的主要问题是:
    (1)确定Y与X间的定量关系表达式,这种表达式称为回归方程;
    (2)对求得的回归方程的可信度进行检验;
    (3)判断自变量X对因变量Y有无影响;
    (4)利用所求得的回归方程进行预测和控制。
    以上内容参考:
  2. 答:首先看 方差分析表 对应的sig 是否小于0.05,如果小于0.05,说明整体回归模型显著,再看下面的回归系数表,如果这里的sig大于0.05,就说明回归模型不显著,下面的就不用再看了。
    其次,在回归模型显著的基础上,看调整的R方,是模型拟合度的好坏,越接近1,说明拟合效果越好。这个在一般做论文中,不需要管它的高低,因为论文重在研究方法和思路的严谨性,导师不会追究你的结果是对是错,你的数据本身就不一定有质量,所以无所谓,不必在意。
    第三 看具体回归系数表中每个自变量 对应的sig值,如果sig小于0.05,说明该自变量对因变量有显著预测作用,反之没有作用。
问:coefficients回归分析结果解读是什么?
  1. 答:coefficients回归分析结果解读是:
    首先看方差分析表,对应的sig是否小于0.05,如果小于0.05,说明整体回归模型显著,再看下面的回归系数表,如果这里的sig大于0.05,就说明回归模型不显著,下面的就不用再看了。 
    其次,在回归模型显著的基础上,看调整的R方,是模型拟合度的好坏,越接近1,说明拟合效果越好。这个在一般做论文中,不需要管它的高低,因为论文重在研究方法和思路的严谨性,导师不会追究你的结果是对是错,你的数据本身就不一定有质量,所以无所谓,不必在意。 
    回归分析的原理和方法:
    是从事物变化的因果关系出发进行分析的一种预测方法,即根据实际统计的数据,通过数学计算,确定变量之间相互依存的数量关系,建立合理的数学模型,借助于定性分析,确定有哪些可能的相关因素。
    收集这些因素的统计资料;应用最小二乘法等,求得各因素之间的相关系数和回归方程;最后,根据该方程进行预测,并对预测结果作可靠性分析。
论文回归结果怎么看
下载Doc文档

猜你喜欢