化学气相沉积钨论文-涂溶,章嵩,后藤孝,张联盟

化学气相沉积钨论文-涂溶,章嵩,后藤孝,张联盟

导读:本文包含了化学气相沉积钨论文开题报告文献综述及选题提纲参考文献,主要关键词:激光化学气相沉积,SiC,CVD,陶瓷薄膜

化学气相沉积钨论文文献综述

涂溶,章嵩,后藤孝,张联盟[1](2019)在《激光化学气相沉积技术制备功能陶瓷薄膜与涂层》一文中研究指出碳化硅(SiC)因其独特的物理和化学性质,例如宽禁带、高热导、高硬度和抗氧化性,而得到广泛应用。化学气相沉积(CVD)是制备SiC膜最重要且有效的方法之一,为了提高其沉积速率,我们将高功率连续激光引入CVD工艺,开发了一种新型激光CVD。使用六甲基乙硅烷(HMDS)和四氯硅烷(SiC14)等作为前驱体,采用冷壁式激光CVD法,将激光光斑直接照射到基板上制备SiC膜。激光功率和总压力分别为0~500 W和0.4~40 kPa,研究了各沉积条件对SiC膜的沉积速率、微观结构、晶相、择优取向和维氏硬度等的影响,最高沉积速率达到3.6 mm/h。本研究团队还采用激光CVD法制备了高温超导涂层、硬质涂层、生物陶瓷涂层、铁电薄膜及离子导体薄膜等。(本文来源于《第叁届粤港澳大湾区真空科技创新发展论坛暨2019年广东省真空学会学术年会论文集》期刊2019-11-28)

宋秋明,贾浩,张礼博,刘松[2](2019)在《低温等离子体增强化学气相沉积工艺生长SiNx薄膜的内应力研究》一文中研究指出SiNx薄膜是一种具有优良光学性能,高介电常数,高电绝缘性,高稳定性以及良好的水氧阻隔性等优点的材料,广泛应用于微电子工艺中。SiNx薄膜制备工艺包括化学气相沉积,磁控溅射等,其中等离子体增强化学气相沉积(PECVD)应用比较广泛。但是常规的PECVD工艺生长温度需要300-400摄氏度左右,温度较高,不适合于一些需要低温生长环境的应用场景。例如应用于有机电致发光二极管(OLED)中的薄膜封装技术,SiNx可以作为性能优异的水氧阻隔层,可以大幅降低水氧透过率,大幅延长OLED中有机电致发光材料的寿命。但是柔性OLED中,有机材料的生长温度要求较低(<100摄氏度),因此研究低温下条件下SiNx薄膜的生长工艺很有必要。同时,柔性OLED器件通常需要可弯折特性,而弯折可能会造成刚性的无机陶瓷材料膜层产生微裂纹或者破碎,从而失去水氧阻隔性能。SiNx膜层产生裂纹主要因为膜层中由弯折产生的附加应力与膜层内应力共同作用下的结果。本文研究SiNx低温PECVD生长工艺,通过改变生长过程中的SiH4/NH3比例可以获得膜层内应力从张应力向压应力梯度变化的SiNx薄膜,分析了薄膜内应力以及光学性质与生长参数之间的关系,可以获得可应用于柔性OLED薄膜封装的SiNx低温低内应力PECVD生长工艺。图1为SiNx膜层内应力以及折射率与NH3气体流速关系曲线。所有SiNx薄膜都使用一台电感耦合等离子体增强化学气相沉积仪(Sentech SI 500D)进行制备,基底为8寸硅片,生长温度85摄氏度,厚度为530nm;使用一台椭偏仪(J.A.Woollam)测量得到膜层厚度和光学常数;使用一台薄膜应力测量仪(FSM)测量镀膜前后的基片弯折程度从而获得膜层内应力数据。(本文来源于《第叁届粤港澳大湾区真空科技创新发展论坛暨2019年广东省真空学会学术年会论文集》期刊2019-11-28)

王雪峰,叶小球,冯春蓉,谌晓洪,杨蕊竹[3](2019)在《化学气相沉积钨中氘热脱附特性的定量分析》一文中研究指出利用不同升温速率的热脱附谱法(TDS)研究了化学气相沉积钨(CVD-W)经70 eV/D、1.3×10~(25) D/m~2的氘离子辐照后,样品中氘的热脱附特性。结果表明:在该实验条件下,CVD-W中氘滞留总量在10~(19) D/m~2量级;氘的脱附温度区间为400~800 K;脱附总量与升温速率呈负相关,且脱附温度区间会随着升温速率提高而向高温区漂移;CVD-W中氘的主要俘获位为位错或晶界,氘的脱附活化能为0.88 eV,缺陷激活能为0.81 eV。(本文来源于《材料热处理学报》期刊2019年11期)

慈海娜,孙靖宇[4](2019)在《基于化学气相沉积技术的粉体石墨烯的制备及能源领域应用》一文中研究指出化学气相沉积技术(chemical vapor deposition, CVD)因其产物设计性强、反应途径灵活、层数均匀可控、衬底种类多样、批量化高品质制备等特点而广受关注.本文以CVD制备石墨烯为出发点,归纳利用模板法和非模板法合成具有特定形貌的高品质粉体石墨烯材料,其具有高电导率、大比表面积和良好的分散性.进一步地,基于CVD方法合成的粉体石墨烯,对其在能量存储领域的应用展开阐述. CVD技术所制备的粉体石墨烯在储能应用领域中展现出的巨大潜力,使其有望成为助力高能量长循环储能器件的理想材料.(本文来源于《科学通报》期刊2019年32期)

刘忠伟,张翔宇,田旭,王正铎,张海宝[5](2019)在《化学气相沉积技术制备碳化镍与镍薄膜的研究》一文中研究指出过渡金属碳化物具有良好的机械和化学稳定性。并且由于其独特的电子结构和地球丰度,可作为价格高昂的贵金属电催化剂的替代物。原子层沉积技术(ALD)是一种新型的化学气相沉积制备技术,具有组分可控可调、厚度均匀精确、薄膜一致性好、保形性高、工艺可重复性好等特性。对于原子层沉积,如果以电能取代热能启动反应,即等离子体增强原子层沉积(PEALD),则除了保留热ALD的原有优势外,还增加了其它诸多性能,如改善材料性能(包括提升薄膜密度,降低杂质含量,以及更好地控制薄膜成分和结构组成),实现较低温度(或室温)沉积,大幅增加薄膜的生长速率等。利用自制的Ni(~(tBu2)AMD)_2前驱体,利用PEALD技术制备了碳化镍薄膜。研究了其生长曲线,考察了制备条件如等离子体作用时间、放电气体种类、沉积温度对薄膜表面形貌、组成成分的影响。研究表明Ni(~(tBu2)AMD)_2前驱体具有较宽的沉积温度窗口(75-250℃),沉积速率为0.039 nm/cycle。所制备的碳化镍薄膜表现出优异的电化学催化活性与超级电容性能,析氢反应中起始过电势仅有-77 mV(对应电流密度-0.1 mA cm-2);当电流密度为-10 mA cm~(-2)时,过电势仍然非常低,为-132 mV。当电流密度为2 mA cm~(-2)时,Ni_3C/碳纳米管的比电容达到1850 F g~(-1)。利用脉冲化学气相沉积技术,制备了镍薄膜。研究在沉积温度为140-250℃薄膜成分的变化。对比研究了在相同温度下引入氢等离子体对薄膜成分的影响。(本文来源于《TFC'19第十五届全国薄膜技术学术研讨会摘要集》期刊2019-11-15)

赵丽丽,孙红卫,李志明,李海玲[6](2019)在《金属有机化学气相沉积反应室磁场数值分析》一文中研究指出针对金属有机化学气相沉积(MOVCD)反应室中因感生电流的集肤效应而导致衬底温度分布不均匀,从而影响生长薄膜质量的问题,通过对电磁加热式MOCVD反应室建立数值仿真模型,分析电流强度和电流频率对磁场分布和焦耳热分布的影响,同时对不同材料组成的基座结构中的磁场分布和焦耳热分布进行研究。结果表明:磁场分布和焦耳热分布不随电流强度的改变而改变,但磁场和焦耳热的数值与电流强度成正比;磁场分布、焦耳热分布和数值随着电流频率的变化而变化,数值与电流频率成正比,且随着电流频率的增大,趋肤效应越明显;改变组成基座的材料组成可以改变基座中焦耳热分布,从而提高衬底温度分布的均匀性。(本文来源于《济南大学学报(自然科学版)》期刊2019年06期)

杨金龙[7](2019)在《化学气相沉积宏量制备高品质石墨烯薄膜》一文中研究指出石墨烯自发现以来,因其非常优异的电学、热学、光学和力学等性能,在高端电子、能源存储、复合材料等领域有着广阔的应用前景~1。为了解决石墨烯的宏量制备和应用问题,自2009年以来,化学气相沉积(Chemical Vapor Deposition,CVD)方法逐渐成为制备高品质石墨烯薄膜的最有效手段之(本文来源于《物理化学学报》期刊2019年10期)

陈帅,高峻峰,SRINIVASAN,Bharathi,M.,张永伟[8](2019)在《单层和双层二硫化钼化学气相沉积生长的动力学蒙特卡罗模拟研究(英文)》一文中研究指出通过化学气相沉积方法,可控合成所需层数的二硫化钼仍然是一个挑战。因此,建立一个能够定量预测单层和多层二硫化钼生长的理论模型,并为实验制备提供指导,是十分必要的。在本文中,我们建立了一个动力学蒙特卡罗模型,来预测单层和双层二硫化钼的化学气相沉积生长。首先,我们提出了第一层和第二层的生长速率受吸附原子浓度分布的控制,以及紧凑叁角形二硫化钼的生长过程为扭结成核和传播。其中,原子浓度是由吸附原子流量,吸附原子的有效寿命,生长温度,边的单位长度能量,单层和双层的单位面积结合能,成核准则决定的。扭结成核和传播是由锯齿边和扶手边附加原子所需的能量势垒决定的。然后,我们采用热力学理论准则对这些参数进行了标定。通过标定的动力学蒙特卡罗模型,我们发现第二层的生长速率与第一层的尺寸有很强的依赖性。随着第一层尺寸增加,第二层的生长速率呈单调递减趋势,甚至在第一层达到某个尺寸时,第二层的生长会被抑制。此外,我们还分析了不同生长温度和吸附原子流量下,双层二硫化钼的尺寸和形貌演化。在双层二硫化钼的整个生长过程中,第一层和第二层的形貌保持紧凑叁角形,验证了扭结成核和传播模型的正确性。模拟结果表明,生长温度的升高或吸附原子流量的降低,促进了双层二硫化钼的生长,这与已报导的实验结果相吻合。生长温度升高使得第二层二硫化钼边缘的吸附原子浓度,随着远离第二层边缘的吸附原子浓度降低而相应降低,促进了双层二硫化钼的生长。同样,吸附原子流量降低减小了基体上的吸附原子浓度,降低了第一层远离边缘和靠近边缘的吸附原子浓度差,从而减缓了第一层的生长。第一层的生长减慢,减缓了第二层远离边缘和靠近边缘的吸附原子浓度差减小到零,从而促进双层二硫化钼的生长。为了更好地指导实验,我们进一步构建了双层二硫化钼生长的相图,可通过控制生长温度和吸附原子流量来实现或阻止双层二硫化钼的生长。因此,本工作不仅揭示了单层和双层二硫化钼生长所需的实验条件,而且为可控合成所需层数的二硫化钼提供了详细指导。(本文来源于《物理化学学报》期刊2019年10期)

陈浩[9](2019)在《化学气相沉积反应器共振问题研究与改善》一文中研究指出在生产过程中,化学气相沉积反应器内托负衬底的托盘由马达带动,按设定的转速以托盘中心为轴进行旋转,反应器会在马达和托盘达到某一转速附近时发生剧烈振动,即共振。生产过程中反应器的共振直接影响了衬底上沉积的薄膜质量。文章通过分析和试验,以调整地脚着地力来避开关键工艺转速时产生的共振,以减少产品报废,提高设备寿命。(本文来源于《江苏科技信息》期刊2019年27期)

武子茂[10](2019)在《化学气相沉积法制备单层二硫化钼的研究进展》一文中研究指出单层二硫化钼(MoS_2)是禁带宽度为1.8 eV的二维直接带隙半导体材料,因其优异的物理化学特性广泛应用于纳米电子器件、传感器、能源、生物医药等多个领域,成为二维材料研究的新热点,但是高质量、产业化制备单层MoS_2还面临着很大的困难。本文主要综述了化学气相沉积(CVD)制备单层MoS_2薄膜的方法,讨论了该方法在国内外的研究现状及其优缺点,最后展望了制备单层MoS_2的发展前景,认为应该朝着可控、低成本、大规模制备单层MoS_2的方向改进工艺。(本文来源于《甘肃科技纵横》期刊2019年09期)

化学气相沉积钨论文开题报告

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

SiNx薄膜是一种具有优良光学性能,高介电常数,高电绝缘性,高稳定性以及良好的水氧阻隔性等优点的材料,广泛应用于微电子工艺中。SiNx薄膜制备工艺包括化学气相沉积,磁控溅射等,其中等离子体增强化学气相沉积(PECVD)应用比较广泛。但是常规的PECVD工艺生长温度需要300-400摄氏度左右,温度较高,不适合于一些需要低温生长环境的应用场景。例如应用于有机电致发光二极管(OLED)中的薄膜封装技术,SiNx可以作为性能优异的水氧阻隔层,可以大幅降低水氧透过率,大幅延长OLED中有机电致发光材料的寿命。但是柔性OLED中,有机材料的生长温度要求较低(<100摄氏度),因此研究低温下条件下SiNx薄膜的生长工艺很有必要。同时,柔性OLED器件通常需要可弯折特性,而弯折可能会造成刚性的无机陶瓷材料膜层产生微裂纹或者破碎,从而失去水氧阻隔性能。SiNx膜层产生裂纹主要因为膜层中由弯折产生的附加应力与膜层内应力共同作用下的结果。本文研究SiNx低温PECVD生长工艺,通过改变生长过程中的SiH4/NH3比例可以获得膜层内应力从张应力向压应力梯度变化的SiNx薄膜,分析了薄膜内应力以及光学性质与生长参数之间的关系,可以获得可应用于柔性OLED薄膜封装的SiNx低温低内应力PECVD生长工艺。图1为SiNx膜层内应力以及折射率与NH3气体流速关系曲线。所有SiNx薄膜都使用一台电感耦合等离子体增强化学气相沉积仪(Sentech SI 500D)进行制备,基底为8寸硅片,生长温度85摄氏度,厚度为530nm;使用一台椭偏仪(J.A.Woollam)测量得到膜层厚度和光学常数;使用一台薄膜应力测量仪(FSM)测量镀膜前后的基片弯折程度从而获得膜层内应力数据。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

化学气相沉积钨论文参考文献

[1].涂溶,章嵩,后藤孝,张联盟.激光化学气相沉积技术制备功能陶瓷薄膜与涂层[C].第叁届粤港澳大湾区真空科技创新发展论坛暨2019年广东省真空学会学术年会论文集.2019

[2].宋秋明,贾浩,张礼博,刘松.低温等离子体增强化学气相沉积工艺生长SiNx薄膜的内应力研究[C].第叁届粤港澳大湾区真空科技创新发展论坛暨2019年广东省真空学会学术年会论文集.2019

[3].王雪峰,叶小球,冯春蓉,谌晓洪,杨蕊竹.化学气相沉积钨中氘热脱附特性的定量分析[J].材料热处理学报.2019

[4].慈海娜,孙靖宇.基于化学气相沉积技术的粉体石墨烯的制备及能源领域应用[J].科学通报.2019

[5].刘忠伟,张翔宇,田旭,王正铎,张海宝.化学气相沉积技术制备碳化镍与镍薄膜的研究[C].TFC'19第十五届全国薄膜技术学术研讨会摘要集.2019

[6].赵丽丽,孙红卫,李志明,李海玲.金属有机化学气相沉积反应室磁场数值分析[J].济南大学学报(自然科学版).2019

[7].杨金龙.化学气相沉积宏量制备高品质石墨烯薄膜[J].物理化学学报.2019

[8].陈帅,高峻峰,SRINIVASAN,Bharathi,M.,张永伟.单层和双层二硫化钼化学气相沉积生长的动力学蒙特卡罗模拟研究(英文)[J].物理化学学报.2019

[9].陈浩.化学气相沉积反应器共振问题研究与改善[J].江苏科技信息.2019

[10].武子茂.化学气相沉积法制备单层二硫化钼的研究进展[J].甘肃科技纵横.2019

标签:;  ;  ;  ;  

化学气相沉积钨论文-涂溶,章嵩,后藤孝,张联盟
下载Doc文档

猜你喜欢