刘阳文:介孔中空SiC基纳米纤维的制备及其可见光催化特性论文

刘阳文:介孔中空SiC基纳米纤维的制备及其可见光催化特性论文

本文主要研究内容

作者刘阳文(2019)在《介孔中空SiC基纳米纤维的制备及其可见光催化特性》一文中研究指出:能源短缺和化学污染是当今全球快速发展面临的两大挑战。氢能被认为是一种理想的新能源,具有燃烧热值高、资源丰富、清洁无污染、减轻燃料自重等系列优点。在众多技术中,半导体光催化分解水产氢被认为是解决目前全球能源危机和环境问题的最具发展前景的技术手段之一。碳化硅(SiC)是第三代半导体的重要材料之一,具有突出的稳定性和耐光腐蚀性。虽然当前SiC光催化研究已取得了一些进展,但依然面临如下主要的困难和挑战:i)比表面积偏低;ii)表面吸附性差;iii)产氢活性效率偏低。本论文针对上述问题,开展相关研究工作,首先通过工艺的探索和优化,实现了介孔中空SiC纳米纤维光催化剂材料的制备及其结构调控,然后在其表面原位生长石墨烯和负载CdS,在提高其比表面积的同时,强化其光生载流子分离与转移,进而实现其可见光催化产氢性能的强化。所取得的主要研究成果如下:以聚乙烯吡咯烷酮(PVP)和聚氮硅烷(PSN)为原料,采用静电纺丝和高温热解,实现了介孔中空SiC纳米纤维的制备及其结构调控。研究结果表明,原料中PVP和PSN的质量浓度是影响SiC介孔中空纳米纤维制备的关键参数之一。其可见光最佳产氢速率为7.67 μmol h-1 g-1,是己报道的纯SiC传统纳米形貌(颗粒、线和纤维)光催化剂的~2倍以上。通过外延石墨烯法,在SiC介孔中空纳米纤维表面原位生长石墨烯(Graphene:G),实现了G/SiC光催化剂的制备。研究结果表明,通过控制生长时间,可以对G/SiC复合材料中石墨烯的层数进行有效调控。因石墨烯优异的电子导电性能,该催化剂的可见光催化产氢速率为29.84μmol h-1g-1,是纯SiC介孔中空纳米纤维的~4倍左右,而且有效的提高了光催化剂的稳定性。采用水热法,在SiC介孔中空纳米纤维表面修饰CdS纳米颗粒,实现了CdS/SiC异质结构光催化剂的制备。研究结果表明,因CdS与SiC之间可以形成Z型载流子转移体系,其能有效促进光生载流子的有效分离并提高光催化活性,该复合光催化剂的可见光催化产氢速率可达124.65μmol.h-h.g’1,为SiC介孔中空纳米纤维的~16倍。采用外延石墨烯法和水热法,将石墨烯优质的导电性和CdS半导体异质结优势有机耦合,实现了CdS/G/SiC三元复合光催化剂的制备。研究结果表明,此三元复合物光催化剂在可见光下表现出极佳的光催化活性和优良的稳定性,其可见光产氢速率值达1544.91μmol h-1g-1,为纯SiC介孔中空纳米纤维的~200倍左右。

Abstract

neng yuan duan que he hua xue wu ran shi dang jin quan qiu kuai su fa zhan mian lin de liang da tiao zhan 。qing neng bei ren wei shi yi chong li xiang de xin neng yuan ,ju you ran shao re zhi gao 、zi yuan feng fu 、qing jie mo wu ran 、jian qing ran liao zi chong deng ji lie you dian 。zai zhong duo ji shu zhong ,ban dao ti guang cui hua fen jie shui chan qing bei ren wei shi jie jue mu qian quan qiu neng yuan wei ji he huan jing wen ti de zui ju fa zhan qian jing de ji shu shou duan zhi yi 。tan hua gui (SiC)shi di san dai ban dao ti de chong yao cai liao zhi yi ,ju you tu chu de wen ding xing he nai guang fu shi xing 。sui ran dang qian SiCguang cui hua yan jiu yi qu de le yi xie jin zhan ,dan yi ran mian lin ru xia zhu yao de kun nan he tiao zhan :i)bi biao mian ji pian di ;ii)biao mian xi fu xing cha ;iii)chan qing huo xing xiao lv pian di 。ben lun wen zhen dui shang shu wen ti ,kai zhan xiang guan yan jiu gong zuo ,shou xian tong guo gong yi de tan suo he you hua ,shi xian le jie kong zhong kong SiCna mi qian wei guang cui hua ji cai liao de zhi bei ji ji jie gou diao kong ,ran hou zai ji biao mian yuan wei sheng chang dan mo xi he fu zai CdS,zai di gao ji bi biao mian ji de tong shi ,jiang hua ji guang sheng zai liu zi fen li yu zhuai yi ,jin er shi xian ji ke jian guang cui hua chan qing xing neng de jiang hua 。suo qu de de zhu yao yan jiu cheng guo ru xia :yi ju yi xi bi ge wan tong (PVP)he ju dan gui wan (PSN)wei yuan liao ,cai yong jing dian fang si he gao wen re jie ,shi xian le jie kong zhong kong SiCna mi qian wei de zhi bei ji ji jie gou diao kong 。yan jiu jie guo biao ming ,yuan liao zhong PVPhe PSNde zhi liang nong du shi ying xiang SiCjie kong zhong kong na mi qian wei zhi bei de guan jian can shu zhi yi 。ji ke jian guang zui jia chan qing su lv wei 7.67 μmol h-1 g-1,shi ji bao dao de chun SiCchuan tong na mi xing mao (ke li 、xian he qian wei )guang cui hua ji de ~2bei yi shang 。tong guo wai yan dan mo xi fa ,zai SiCjie kong zhong kong na mi qian wei biao mian yuan wei sheng chang dan mo xi (Graphene:G),shi xian le G/SiCguang cui hua ji de zhi bei 。yan jiu jie guo biao ming ,tong guo kong zhi sheng chang shi jian ,ke yi dui G/SiCfu ge cai liao zhong dan mo xi de ceng shu jin hang you xiao diao kong 。yin dan mo xi you yi de dian zi dao dian xing neng ,gai cui hua ji de ke jian guang cui hua chan qing su lv wei 29.84μmol h-1g-1,shi chun SiCjie kong zhong kong na mi qian wei de ~4bei zuo you ,er ju you xiao de di gao le guang cui hua ji de wen ding xing 。cai yong shui re fa ,zai SiCjie kong zhong kong na mi qian wei biao mian xiu shi CdSna mi ke li ,shi xian le CdS/SiCyi zhi jie gou guang cui hua ji de zhi bei 。yan jiu jie guo biao ming ,yin CdSyu SiCzhi jian ke yi xing cheng Zxing zai liu zi zhuai yi ti ji ,ji neng you xiao cu jin guang sheng zai liu zi de you xiao fen li bing di gao guang cui hua huo xing ,gai fu ge guang cui hua ji de ke jian guang cui hua chan qing su lv ke da 124.65μmol.h-h.g’1,wei SiCjie kong zhong kong na mi qian wei de ~16bei 。cai yong wai yan dan mo xi fa he shui re fa ,jiang dan mo xi you zhi de dao dian xing he CdSban dao ti yi zhi jie you shi you ji ou ge ,shi xian le CdS/G/SiCsan yuan fu ge guang cui hua ji de zhi bei 。yan jiu jie guo biao ming ,ci san yuan fu ge wu guang cui hua ji zai ke jian guang xia biao xian chu ji jia de guang cui hua huo xing he you liang de wen ding xing ,ji ke jian guang chan qing su lv zhi da 1544.91μmol h-1g-1,wei chun SiCjie kong zhong kong na mi qian wei de ~200bei zuo you 。

论文参考文献

  • [1].五氧化二钽基纳米材料的制备及光催化性能研究[D]. 于欣.哈尔滨工业大学2018
  • [2].一维纳米管光催化剂的制备与催化活性研究[D]. 胡国文.兰州大学2019
  • [3].两种典型光催化剂的形貌控制合成及其用于构筑复合界面提升反应活性的研究[D]. 马新龙.兰州大学2018
  • [4].基于TiO2的异质结复合纳米光催化剂的制备及人工树叶的构建[D]. 吴可量.石河子大学2019
  • [5].红磷基光催化体系的构建及协同去除Cr(Ⅵ)和有机污染物的性能研究[D]. 白雪.西北大学2019
  • [6].铋系异质结光催化剂的可控制备及性能研究[D]. 杨春明.吉林大学2019
  • [7].晶面异质结光催化剂界面电荷调控及其在光解水中的应用[D]. 韦廷查.中国工程物理研究院2019
  • [8].铜参与的表面等离子共振光催化剂的制备、表征和光催化性能研究[D]. 张丕勇.华南理工大学2019
  • [9].几种铋基光催化剂的微结构调控及光催化性能研究[D]. 张洋洋.上海交通大学2016
  • [10].一维镉锌硫固溶体光催化剂结构调控及制氢构效关系研究[D]. 韩钟慧.哈尔滨工业大学2019
  • 读者推荐
  • [1].多孔碳纳米复合材料制备及其电催化应用研究[D]. 刘坚.东北师范大学2018
  • [2].介孔SiO2负载多金属催化剂制备及光-Fenton降解酸性金黄G研究[D]. 白晓龙.中国矿业大学2018
  • [3].新型锡氧化物及其复合材料的合成与光催化性能研究[D]. 胡建玲.北京科技大学2019
  • [4].复合金属氧化物中空多壳结构的制备及其光催化应用研究[D]. 魏延泽.北京科技大学2019
  • [5].聚合物纤维织物的Ag/TiO2纳米材料整理及其多功能应用研究[D]. 董培梅.浙江大学2019
  • [6].碳化硅/碳泡沬基电磁波吸收超材料研究[D]. 李万崇.中国科学技术大学2019
  • [7].二维介孔过渡金属化合物纳米复合催化剂的可控构筑及其在能源催化中的应用研究[D]. 霍丽丽.内蒙古大学2019
  • [8].碳化硅及其复合材料的制备与电磁波吸收性能研究[D]. 牛芳旭.山东大学2019
  • [9].TiO2基复合纳米材料的制备、表征及光催化性能研究[D]. 寇书芳.山东大学2018
  • [10].碳化硅基复合材料的设计、制备及可见光催化产氢性能研究[D]. 彭媛.北京科技大学2017
  • 论文详细介绍

    论文作者分别是来自北京科技大学的刘阳文,发表于刊物北京科技大学2019-06-27论文,是一篇关于碳化硅论文,介孔论文,中空论文,纤维论文,光催化产氢论文,北京科技大学2019-06-27论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自北京科技大学2019-06-27论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。

    标签:;  ;  ;  ;  ;  ;  

    刘阳文:介孔中空SiC基纳米纤维的制备及其可见光催化特性论文
    下载Doc文档

    猜你喜欢