导读:本文包含了牙鲆胚胎论文开题报告文献综述及选题提纲参考文献,主要关键词:牙鲆,胚胎,内参基因,热休克蛋白基因70(Hsp70)
牙鲆胚胎论文文献综述
陈张帆,宋莉妮,王鹏飞,田永胜,王文文[1](2018)在《牙鲆胚胎低温处理下内参基因筛选及CIRP和Hsp70基因表达分析》一文中研究指出牙鲆(Paralichthys olivaceus)是我国主要的海水经济养殖鱼类,在胚胎冷冻保存方面已获得了超低温冷冻保存成功的案例,但在分子水平上对牙鲆胚胎在低温状态下相关基因的表达进行研究,至今还未见报导。本研究首先收集了牙鲆的3个胚胎时期(肌节期、尾芽期和心跳期),分别在0℃及16.5℃进行处理培养,使用实时荧光定量PCR技术检测4个内参基因18S rRNA、ACTB、GAPDH及EF1α的表达水平,并用Ge Norm和Norm Finder软件对其的稳定性进行排序分析。Ge Norm软件分析结果显示,18S rRNA和EF1α的稳定性最好,稳定性最差的为GAPDH;Norm Finder软件分析结果显示,18S rRNA的稳定性最好。综合两个软件的分析结果,在不同发育时期以及低温处理的牙鲆胚胎中,18S rRNA表达量相对稳定,较其他3个基因更适合作为内参基因。为探究牙鲆胚胎在低温处理下分子水平的变化,本研究选取了对温度适应性较强的尾芽期胚胎为实验材料,分别在低温0℃和正常培养温度16.5℃下进行培养,并选取与应激反应相关的热休克蛋白基因(heat shock protein,Hsp)70和冷诱导RNA结合蛋白基因(cold-inducible RNA-binding protein,CIRP)进行表达量分析。实时荧光定量PCR的结果表明,CIRP的表达量在0℃处理30 min之内逐渐下降,在30 min时达到最低值,30~120 min内上升,并在120 min时达到峰值,之后回落,在180 min时,其表达量回落到与对照组相似的水平。而Hsp70在低温处理的前30分钟表达量下降,后回升,120 min达到最大值后回落的现象,与对照组有显着性差异(P<0.05)。研究结果说明低温会导致CIRP及Hsp70基因表达水平的改变,先下降后升高再回落的趋势也说明了机体内对低温应激产生了保护反应,为探索牙鲆胚胎在低温下调节和适应的分子机理提供了一定的依据。(本文来源于《农业生物技术学报》期刊2018年08期)
段秀娟,马玉和,任延军[2](2015)在《牙鲆早期胚胎发育的盐度胁迫研究》一文中研究指出研究了盐度对牙鲆受精卵的沉浮性及早期胚胎发育的影响。结果表明:受精卵在海水盐度30以上为浮性,盐度27.5时为悬浮,盐度25以下为沉性;孵化期适盐范围为25~45,最适盐度范围为30~35;在盐度15~20和45~50下,牙鲆受精卵孵化率显着下降,仔鱼的畸形率大幅上升;牙鲆原肠期对盐度变化的耐受力高于囊胚期,囊胚期高于4细胞期。(本文来源于《天津农业科学》期刊2015年06期)
陈洁,鲍宝龙[3](2015)在《牙鲆胚胎阶段pax6、tbx3和rx1基因的表达》一文中研究指出在眼睛发育过程中,Paired Box 6(pax6)和T-Box Transcription Factor 3(tbx3)界定了视网膜发生区域,Retinal Homeobox Protein 1(rx1)确定了视杯的形成范围。本研究调查了pax6、tbx3和rx1基因是否在左右眼睛发生区域的表达范围存在差异。荧光定量PCR显示,牙鲆pax6、tbx3和rx1基因从受精后20 h开始表达。RNA整体原位杂交检测发现pax6基因在牙鲆胚胎左右眼睛发生区域表达,左侧表达范围较右侧略大,同时pax6在前脑以及神经管处也有表达;tbx3和rx1基因在牙鲆胚胎左右眼睛发生区域表达,左右侧表达范围无明显可见差异。提示我们,胚胎阶段眼睛发育过程中pax6在左右视网膜的表达范围存在的差异,是否可能导致牙鲆仔、稚鱼左右眼眶上和眶下成纤维细胞前体数量上存在差异,并最终导致变态阶段甲状腺激素诱导下的眼睛移动?(本文来源于《上海海洋大学学报》期刊2015年03期)
王玉芬,司飞,孙朝徽,宋立民,姜秀凤[4](2014)在《盐度对全雌牙鲆胚胎发育和仔鱼活力的影响》一文中研究指出用1000mL量筒进行全雌牙鲆卵浮性试验,每次取卵500粒,观察了全雌牙鲆卵在不同盐度下的悬浮状况。在不充气、不投饵、水温15~16℃条件下,取盐度试验孵化出的正常仔鱼100尾放入20cm×20cm×20cm的小方型水槽中,设置10个盐度梯度,10、15、20、25、30、35、40、45、50,自然海水作对照;同时在不充气、不投饵、水温17~18℃条件下,取在自然海水中孵化出的正常仔鱼100尾放入20cm×20cm×20cm的小方型水槽中,设置12个盐度梯度,5、10、15、20、25、30、35、40、45、50、55,自然海水作对照,观察不同盐度对全雌牙鲆胚胎发育及仔鱼存活的影响。试验结果表明,全雌牙鲆卵在盐度≤27时,全部沉底,盐度为27~30时,呈悬浮状态,盐度≥30时,全部上浮。胚胎发育在盐度为30~50时,孵化率均超过71.8%,差异不显着(P>0.05),畸形率小于4.3%;盐度为10~30时的孵化率超过64.5%,畸形率小于5.5%。盐度为10~25时的孵化率低于盐度30~50的孵化率,差异显着(P<0.05);其畸形率高于盐度30~50的畸形率,差异不显着(P>0.05)。因此,高盐度比低盐度更适合胚胎发育。仔鱼在盐度为10~40时,均能很好地成活,盐度为20时,仔鱼的无投饵存活系数生存活力指数值最高。盐度5以下、50以上,仔鱼的无投饵存活系数小于5,仔鱼基本不能存活。(本文来源于《水产科学》期刊2014年03期)
Manish,Raj,Pandey[5](2013)在《利用牙鲆鳃细胞FG和斑马鱼胚胎对氨基甲酸酯类杀虫剂残杀威和西维因的细胞毒性、遗传毒性和致畸性的毒性评估研究》一文中研究指出Two carbamate insecticides, propoxur and carbaryl, having a wide spectrum ofapplications, have intensified the risk of exposure to non-target organisms due totheir indiscriminate use. Propoxur (2-isopro poxy phenyl methylcarbamate) is usedthroughout the world as insecticides, herbicides, nematocides, acaricides, fungicides,rodenticides, avicides, and bird repellents with their application in a wide variety ofhabitats including agricultural lands, forests, rangelands, wetlands, residential areas,and commercial sites. Carbaryl (1-naphthyl-N-methylcarbamate), the most frequentlyused insecticide in the carbamate chemical family, is widely used for the control of avariety of pests on fruits, vegetables, cereals, forage, cotton, forests, lawns,ornamentals and many other crops as well as poultry, livestock and pets. The toxicmode of action of carbamate insecticides for animals is the inhibition of the enzymeacetylcholinesterase (AChE) at synaptic junctions in the nervous system, resulting inthe accumulation of acetylcholine in the nerve synapses, causing uncontrolledmovement, paralysis, convulsions, tetany, and possible death. In addition, bothinsecticides have also been shown to be toxic to non-target species like honeybees,amphibians, birds, fishes and even mammals including humans, though their toxicityvaries according to the species.Toxicity of pesticides on non-target organisms and ecosystems is of worldwideconcern. The widespread applications of these carbamates have attracted increasingconcerns on the safety of aquatic organisms as this pesticide eventually ends up intothe aquatic environment. Fish are an important population of the aquatic ecosystemsand often used for monitoring toxicity in the aquatic environments. Accumulatingevidences showed that propoxur is moderately to slightly toxic to freshwater fishwhereas carbaryl can range from highly to slightly toxic to freshwater fish on anacute basis and is moderately toxic to ocean and estuary fish.The main purpose of the present study was to examine the toxic effects of bothcarbamate insecticides propoxur and carbaryl in the in vitro cultured FG cells and zebrafish embryos with a view to record their cytotoxicity, genotoxicity andteratogenicity. In specific, in vitro studies were performed using FG cell line todetermine the cytotoxic effects of both insecticides by MTT reduction, neutral reduptake (NRU), lactate dehydrogenase (LDH) release, and Hoechst33342andpropidium iodide (PI) double staining assays; genotoxic effects was evaluated bycomet assay. The embryotoxicity test dealt with the assessment of these carbamatesin developing zebrafish embryos by observing diverse general morphologicalendpoints. This work has been focused on various aspects of toxicity measurementsof both insecticides to FG cells and zebrafish embryos, which may provideinformation relevant to other carbamate insecticides.Both propoxur and carbaryl treatments were seen to inhibit the proliferation ofFG cells in a dose-dependent manner, indicating a decrease in the viability of FG cellswith an increase in insecticides concentrations. The MTT, NRU and LDH releaseassays results demonstrated that both compounds exerted acute cytotoxic effects onFG cells, showing24h-IC50values of89.96土1.04lig/ml,103.4土1.14μg/ml and86.59土1.13lig/ml, respectively for propoxur, whereas53.48土1.21lig/ml,59.13土1.19μg/ml and46.21土1.24lig/ml, respectively for carbaryl. The results showed thatLDH leakage and MTT assay were more sensitive than NRU assay in the cytotoxicitydetection of exposed FG cells to both insecticides. The different mechanisms oftoxicity detection for these assays and the toxic mechanism of action of insecticidesin FG cells may account for the different sensitivity. LDH leakage assay detected thereleased LDH enzymes from the dead cells upon loss of their membrane integrity bytoxicants. However, MTT assay determined the perturbation of the mitochondrialfunction of live cells caused by toxicants, whereas NRU assay detected the loss oflysosomal activity of live cells. But the NR accrual and retention were also dependenton intact plasma membrane and adequate energy metabolism in addition to afunctional lysosome. Thus, the interruption of mitochondrial function and injury ofmembrane integrity by both insecticides may to some degree resulted in a relativelylower sensitivity of NRU assay.Taken together, both propoxur and carbaryl imposed acute cytotoxicity on FGcells, and the order of sensitivity for these three assays, based on their24h-IC50values obtained, was LDH> MTT> NRU. In addition, the obtained cytotoxicity by bothinsecticides in FG cells was closely correlated in all these assays, independent of thecytotoxic endpoints employed.The data by LDH release assay were further confirmed by examining themorphological changes of the exposed FG cells. Obvious morphological changes wereobserved in the FG cells after exposed to100lag/ml and above for propoxur, whereas25μg/ml and above for carbaryl after24h. The data revealed that the release of LDHhad happened before observable morphological changes occurred in exposed FGcells to propoxur but it happened simultaneously with the obvious morphologicalchanges for carbaryl. With further increase of the concentration of these compounds,the treated cells started to shrink and distort into irregular shape, and eventuallydetached from the substrate surface and lysed.Based on the observations of the morphology of FG cells and intensity of blueand red fluorescence of the nuclei of FG cells as determined by Hoechst33342andpropidium iodide (PI) double staining assay, the toxicity of both insecticides was seenmanifested in terms of necrosis and in a dose-dependent way rather than apoptosissince apoptotic cells were noticed sparsely. Significant cell damages were observedafter24h exposure at the concentration of>100μg/ml for propoxur and>10μg/mlfor carbaryl (p<0.05).DNA fragmentation assay revealed that there was no effect of these insecticideson the DNA integrity of FG cells as no obvious DNA laddering was induced by bothinsecticides tested in the FG cells.Further, the results obtained in the genotoxicity evaluation of both insecticidesby comet assay showed that propoxur can induce weak DNA damage in exposed FGcells in a dose-dependent manner at levels from10-75μg/ml of propoxur, however,it was found non-significant up to20μg/ml concentration of carbaryl. The DNA damage scores and the results of propoxur demonstrated that the damage gradeswere not significantly different from the control (p>0.05) up to50μg/ml and a littledose-effect relationship was evident. Though not statistically significant up to50l-ig/ml propoxur, the cells were affected the most at a concentration of75lag/ml. Butthe damage grades were not significantly different from the control (p>0.05) at allthe tested concentrations of carbaryl, though a little dose-effect relationship wasevident.The results of genotoxic response for the time-dependent exposure to50μg/mlpropoxur, based on the concentration that produced similar cytotoxicity, from3-96hin FG cells demonstrated that the DNA damage increased with the increase of theexposure periods to propoxur up to certain level. Significant DNA damage was seenfrom24-96h of exposure as compared with the control (p<0.05). But carbaryldemonstrated no statistically significant genotoxic effects at all the testedconcentrations and time of exposure (p>0.05).In addition, the concentration responsive endpoints analyzed in all the tests inFG cells indicated that the significant toxic effects at all the concentrations testedwere observed from75μg/ml for propoxur and10μg/ml for carbaryl (p<0.05)except the effects of carbaryl on the membrane integrity and genotoxic response ofFG cells.Finally, teratogenicity assay has been carried out to evaluate the teratogenicity ofpropoxur and carbaryl based on the zebrafish embryotoxicity test. The resultsobtained from this assay by determining the developmental effects and endpointsassociated to both insecticides exposure showed that the developing zebrafishembryos were more sensitive to carbaryl than propoxur. The egg/embryo mortalitydata demonstrated elevated mortality rates in both dose-and time-dependentmanner by propoxur with the lowest observed effect concentration (LOEC) of100l-ig/ml (p<0.05) and24h-,48h-and96h-LC50values of166.4土1.06lig/ml,146.3土1.07μg/ml and134.8土1.06lig/ml, respectively. But in case of carbaryl, the early mortality of embryos were first observed at8and12hours post fertilization (hpf)with LC50values of80.01土2.5μg/ml and62.08土1.05lig/ml, respectively. Moreover,the LOEC of carbaryl was10μg/ml (p<0.05) with24h-,48h-and96h-LC50values of41.80土1.10lig/ml,17.80土1.04μg/ml and14.46土1.05lig/ml, respectively.Malformations of the exposed embryos were found after12and8hpf forpropoxur and carbaryl, respectively in comparison to control. The earliest developingprocesses were observed disrupted at100and200μg/ml of propoxur exposureconcentrations causing slowdown of epiboly after12hpf. But slowdown of epibolywas observed significantly only at8and12hpf for40and80μg/ml of carbarylconcentrations (p<0.05). Further, the delayed or unfinished epiboly at8and12hpflater resulted in either malformation or mortality of exposed embryos to bothinsecticides.Yolk sac edema was conspicuous and statistically significant at theconcentrations of100and200μg/ml propoxur at24,48and96hpf but pericardialsac edema was found significant at48and96hpf (p<0.05). The significantpercentage effects on yolk and pericardial sac were observed at24hpf for10,20and40μg/ml carbaryl, however these effects were observed only at10and20μg/mlcarbaryl at48and96hpf. Moreover, total body length was markedly affected bycarbaryl at an exposure level of>10lig/ml, causing significant reduction in bodylength at96hpf (p<0.05). Tail flexure was also observed at96hpf and foundsignificantly affected at10and20μg/ml carbaryl. In addition, carbaryl affected bothtotal body length and tail flexure of all survived embryos at the concentration of20Effects of different concentrations of both insecticides on spontaneousmovement of embryos showed that the frequency of movement decreased withincreasing concentrations. Resulting effects were discrete and the distribution wasnot symmetric over the mean. Kolmogorov-Smirnov (KS) test showed that there wasno uniform distribution between the spontaneous movements among all tested concentration groups (p<0.05).Significant decline in heart rates were observed at propoxur concentrations of100and200μg/ml in comparison to control at48,72and96hpf (p<0.05). However,the heart rates were decreased at48and72hpf at carbaryl concentrations of10and20μg/ml but significantly declined at all the tested concentrations from1lag/ml andabove at96hpf. Moreover, it was noted that the heart rates of exposed embryosshowing yolk sac edema and pericardial edema were feeble and irregular andreduced to the lowest beats for both compounds.The statistically significant effects on hatching at72hpf were observed at200l-ig/ml propoxur but these effects were observed at100and200μg/ml propoxur at96hpf. However, embryos exposed to10and20lag/ml carbaryl at96hpf were foundsignificantly affected on their hatching when compared with the control (p<0.05).But the toxicity effects increased with the increasing concentrations and in adose-dependent manner. The median hatching time (HT50) of zebrafish embryos onexposure to both insecticides were calculated from the cumulative hatching rates.Significant differences between the control and exposed groups were observed onlyat100μg/ml of propoxur concentration (HT50=59.19土1.02) and at10μg/ml ofcarbaryl concentration (HT50=60.93土1.05)(p <0.05).In addition, the time and concentration responsive endpoints analyzed in all thetests in zebrafish embryos demonstrated that the significant toxic effects wereobserved at100and200μg/ml of propoxur except the effect on cumulative hatchingrate at72hpf, in which it was found significant only at the concentration of200l-ig/ml (p<0.05). But in case of embryos exposed to carbaryl, the significant toxiceffects were observed from10μg/ml (p<0.05) except the effect of slowdown ofepiboly at8and12hpf, in which it was found significant only at the concentration of40μg/ml along with the effect on heart rate at96hpf showing significant only at1l-ig/ml carbaryl.Both insecticides demonstrated no abnormality in other developmental endpoints, such as tail detachment, otolith formation, somite formation, eyedevelopment and body pigmentation in the treated embryos.In summary, the current study demonstrated that the exposure of FG cells topropoxur and carbaryl for24h could induce acute cytotoxic effects in adose-dependent manner but weak and non-significant genotoxic effects for propoxurand carbaryl, respectively. FG cells also reacted differently to the differentcytotoxicity assays, confirming the suitability of this cell line in the screening ofcytotoxic and genotoxic effects of this type of pesticide. Using zebrafish embryo as amodel, the present research also provided more information on the toxic effects ofboth carbamates on the early embryo development of fish. The embryos exposed toboth insecticides exhibited a series of toxic effects, including mortality, slowdown ofepiboly, decreased spontaneous movement, yolk and pericardial sac edemas,lowering of heart rates and delayed hatching rates along with additional reducedbody length and tail flexure in case of carbaryl exposure. Thus investigation of thecytotoxicity, genotoxicity, and teratogenicity of propoxur and carbaryl using FG cellsand zebrafish embryos will markedly contribute to the safety assessment of theseinsecticides for aquatic organisms.(本文来源于《中国海洋大学》期刊2013-06-02)
翟亚楠[6](2013)在《叁种增塑剂(DEHP、DBP和TBAC)对牙鲆鳃细胞FG和斑马鱼胚胎的毒性作用研究》一文中研究指出增塑剂(又称塑化剂),是一类工业用高分子材料助剂,被广泛添加到塑料制品中以提高塑料的柔韧性。因其在环境中的高迁移性,现已成为地球上最广泛存在的污染物之一。2011年台湾所爆发的“增塑剂风波”,进一步激起了全社会对增塑剂毒性的广泛关注。由于水生生物大都是体外产卵、体外受精和体外发育,而增塑剂的生殖毒性和发育毒性可能会严重影响水生生物种群的未来。目前有关增塑剂对水生生物毒性的研究报道还很少,也缺乏系统有效的针对增塑剂类污染物毒性特点的生物评价技术和体系,这很不利于人们对增塑剂毒性的预防和管理工作。本文首先利用海水鱼类牙鲆的鳃细胞系(FG)比较研究了3种增塑剂邻苯二甲酸二乙基己酯(DEHP)、邻苯二甲酸二丁酯(DBP)和乙酰柠檬酸叁丁酯(TBAC)的急性细胞毒性效应,采用MTT法、中性红(NR)吸收法、乳酸脱氢酶(LDH)释放法、吖啶橙/溴化乙锭(AO/EB)双荧光染色法和DNA ladder法,分别检测了以上叁种增塑剂对牙鲆鳃FG细胞的活性影响、生长抑制、细胞膜损伤和细胞凋亡诱导效应。从细胞形态上观察,这叁种增塑剂都会对FG产生细胞毒性,随着处理浓度的升高和时间的延长,细胞皱缩变圆的数目也逐渐增多,说明这叁种增塑剂的细胞毒性具有一定的浓度效应和时间效应。这叁者的最低效应浓度(LOEC)分别为:DEHP为150μg/mL,DBP为50μg/mL,TBAC为150μg/mL。MTT法分析结果表明,以上3种增塑剂对FG细胞的活性均有抑制作用,但浓度较低时(0.005~50μg/mL),抑制作用不明显,并且这叁者之间没有明显的毒性差异,其在24h和48h的细胞活性抑制率分别约为96%和94%。当浓度达到150μg/mL时,才表现出明显的抑制作用,其毒性等级为:DBP>TBAC>DEHP。DEHP、DBP和TBAC对FG细胞24h的抑制率分别为:96±0.19%、80.8±3.7%和91.9±3.9%;48h的抑制率分别为:94.8±1.5%、62.8±2.5%和73.8±0.58%。这表明,以上3种增塑剂对FG细胞活性的抑制作用具有明显的时间效应,随着时间的延长,对FG细胞的抑制作用增强。中性红(NR)吸收法分析结果表明,以上3种增塑剂都可以抑制FG细胞的生长,而且这种抑制作用具有明显的浓度依赖性和时间依赖性,且毒性等级为:DBP>TBAC>DEHP。在0.005μg/mL时,DEHP、DBP和TBAC对FG细胞24h的抑制率分别为:96.7±0.79%,95.8±0.65%和95.9±1.1%;48h的抑制率分别为95.9±1.1%,93.3±0.8%和94.1±1.4%。DEHP、DBP和TBAC对FG细胞的24h的IC50(半数抑制浓度)值分别为:290.4(242.0-348.6)、144.8(99.23-211.2)和217(176.3-267.2)μg/mL(95%的置信区间);48h的IC50值分别为:213.8(166.6-274.3)、108.3(71.05-165.0)和135.8(97.54-189.1) μg/mL(95%的置信区间)。可见,中性红吸收法更适合检测这叁种增塑剂对FG细胞的毒性作用。乳酸脱氢酶(LDH)释放法分析结果表明,随着叁种增塑剂浓度的升高,处理组FG细胞中的培养基上清中乳酸脱氢酶含量也随之升高,具有一定的剂量效应关系,其毒性等级也为:DBP>TBAC>DEHP。0.005μg/mL的DEHP、DBP和TBAC处理FG细胞24h后的LDH相对活性最低,分别为:21.1±5.8%、33.4±0.8%和30.2±0.8%;而150μg/mL的DEHP、DBP和TBAC处理FG细胞24h后的相对活性最高,分别为:48.4±0.5%、72.6±1.6%和52.2±5.7%。以上结果表明,3种增塑剂可破坏FG细胞的细胞膜,使细胞膜的完整性遭到破坏,致使FG细胞质中的LDH被释放到培养基上清中。AO/EB双荧光染色结果表明,这叁种增塑剂对FG细胞的凋亡诱导效应很低,最高浓度(150μg/mL)的DEHP、DBP和TBAC处理FG细胞24h后的凋亡诱导率分别为:2.4%、28%和6%。因此,没有检测到DNAladder。其次,本文还利用斑马鱼胚胎,比较研究了以上3种增塑剂的胚胎毒性,对这3种增塑剂对胚胎各个发育阶段产生的畸形特征、24h的致死率和72h的孵化率的检测结果表明,(1)这叁种增塑剂均能影响胚胎的发育,4h时可观察到胚胎自溶的现象,8h时可观察到外包变缓的现象,12h时可观察到无体节形成的现象,24h时可观察到无头部形成的现象,48h时可观察到色素沉积减少或缺失的现象,72h时可观察到孵化率降低,并且出现心包囊肿的现象,96h时可观察到脊柱弯曲的现象。(2)24h的致死率研究结果表明:随着增塑剂浓度的升高,胚胎致死率也逐渐升高。在最低浓度时(0.005μg/mL),DEHP、DBP和TBAC的胚胎致死率分别为:16.7±5.8%、76.7±7.6%和18.3±2.9%。DBP的毒性较高,在50和150μg/mL时,胚胎全部死亡。而DEHP和TBAC在150μg/mL的致死率分别为65±5%和75±5%。(3)72h的孵化率也随着增塑剂浓度的升高,孵化率逐渐降低。DBP在最低浓度(0.005μg/mL)时,胚胎的孵化率已经比较低,为16.7±8.2%;在50和150μg/mL时,孵化率为0。而DEHP和TBAC在150μg/mL的孵化率分别为21.7±12.6%和10±13.2%。最后,通过比较叁种增塑剂之间的毒性差异,对不同增塑剂毒性作用的可能机制进行了分析和讨论。TBAC对牙鲆鳃细胞FG和斑马鱼胚胎都具有毒性,并且毒性高于DEHP,这一结果与已报道的有关TBAC无毒的实验结果不一致。综上所述,中性红(NR)吸收法比MTT法更适合检测这叁种增塑剂对FG细胞生长的抑制作用,其检测结果与乳酸脱氢酶(LDH)释放法检测结果相一致;24h的吖啶橙/溴化乙锭(AO/EB)双荧光染色法检测结果说明这叁种增塑剂对FG细胞的致死可能不是通过凋亡诱导途径;通过观察这叁种增塑剂对胚胎发育的影响,说明其对斑马鱼胚胎都具有胚胎毒性,表现为各种各样的畸形特征、胚胎致死和孵化率降低。这叁种增塑剂对牙鲆鳃细胞FG和斑马鱼胚胎都具有毒性,其毒性等级为DBP>TBAC>DEHP。(本文来源于《中国海洋大学》期刊2013-05-27)
隋娟,徐世宏,王文琪,马道远,肖志忠[7](2012)在《牙鲆与夏鲆杂交及回交子代胚胎发育及早期生长比较》一文中研究指出通过人工授精技术对牙鲆(Paralichthys olivaceus)和夏鲆(Paralichthys dentatus)进行了正反交及回交实验,并比较了正反交、回交子代的胚胎发育时序和仔稚幼鱼的生长。结果表明:孵化水温18.0±0.5℃下,初孵仔鱼破膜用时为:牙鲆41 h,正交鲆47 h,回交牙鲆42 h30 min,回交夏鲆44 h;16.5±0.5℃下,夏鲆61 h 40 min,反交鲆66 h。正交及两组回交子代在胚胎期均可正常发育。反交子代卵裂期出现异常,仅少数胚胎可以孵化。胚胎孵化后,在1~64日的培养过程中,反交鲆于3~4 d内全部死亡,回交牙鲆发育至18日龄时全部死亡。正交鲆和回交夏鲆可正常发育,与牙鲆没有明显差别。(本文来源于《海洋科学》期刊2012年06期)
陈朴贤[8](2012)在《犬齿牙鲆胚胎及仔、稚、幼鱼形态发育观察》一文中研究指出犬齿牙鲆(Paralichthys dentatus)卵为端黄卵,受精卵浮性,卵径950~1 100μm,油球径200~225μm。在水温20.5~22.0℃,盐度33条件下培育,受精后1 h 20 min进入卵裂期,6 h 10 min进入囊胚期,11 h 20 min进入原肠胚期,19 h 10 min发育到胚孔封闭期,胚体形成,26 h 50 min尾芽出现,33 h 35 min心跳开始,48 h 10 min开始孵化出仔鱼。初孵仔鱼平均全长2.59 mm±0.02 mm,在培育水温为17.0~21.0℃,盐度24~34条件下,胚后发育时序为:1日龄~9日龄为仔鱼前期,10日龄平均全长5.52 mm±0.05 mm,卵黄囊和油球完全吸收进入仔鱼后期;40日龄平均全长20.82 mm±0.67 mm,各鳍鳍条发育形成进入稚鱼期;65日龄平均全长41.13 mm±0.88 mm,全身鳞被完整进入幼鱼早期。(本文来源于《海洋科学》期刊2012年06期)
韩利[9](2012)在《人工纳米氧化锌颗粒对牙鲆FG细胞和斑马鱼胚胎的毒性及其毒性作用机制》一文中研究指出纳米氧化锌(nZnO)因具有独特的光催化作用、紫外吸收能力和杀菌作用,已被广泛地运用到人类日常用品中,如纺织品、化妆品、牙膏和抗菌剂等,由其所引起的生物毒性效应也引起了人们的广泛关注。本文拟利用海水鱼类牙鲆的鳃细胞系(FG)来比较研究3种粒径的ZnO颗粒(30nm、80-150nm和2μm)的细胞毒性效应,利用斑马鱼胚胎来比较研究这3种粒径ZnO颗粒的胚胎毒性,以了解ZnO颗粒的毒性效应与其粒径大小的关系。在细胞毒性检测中,采用MTT法、乳酸脱氢酶(LDH)检测法和Hoechst33342/PI双荧光染色法及DNA片段化法,来分别检测这3种粒径的ZnO颗粒对FG细胞的生长抑制、细胞膜损伤和凋亡诱导能力。在胚胎毒性检测中,观察这3种粒径的ZnO颗粒对斑马鱼胚胎孵化率和致畸性的影响。为了探讨ZnO颗粒的毒性与其锌离子(Zn~(2+))释放量的相关性,本文还研究了ZnCl_2对FG细胞的毒性,以及不同处理浓度下3种粒径ZnO颗粒在PBS中的锌离子(Zn~(2+))释放量。为了探讨这3种粒径ZnO颗粒的团聚效应与其毒性的关系,本文还比较研究了超声波处理和血清对ZnO颗粒团聚程度及其毒性效应的影响。本文的研究结果为进一步加深人们对纳米ZnO颗粒的毒性及其致毒机制的了解,为人工纳米材料的环境污染生物检测系统的建立奠定基础。MTT分析的结果表明,3种ZnO颗粒都可以抑制FG细胞的生长,而且这种抑制作用具有明显的浓度依赖性和时间依赖性。30nm、80-150nm和2μm ZnO颗粒对FG细胞的24h的IC50(半数抑制浓度)值分别为:5.136(3.9-6.8)、5.826(4.1-8.3)和6.473(4.3-9.7)μg/ml(95%的置信区间),毒性大小为30nm>80-150nm>2μm。可见,3种粒径ZnO颗粒对FG细胞生长的抑制作用表现出了明显的粒径效应,随着ZnO颗粒粒径的减小而毒性增大;而且ZnO颗粒的浓度越低,这种粒径效应越明显。LDH分析的结果表明,随着ZnO颗粒浓度的升高,3种粒径ZnO颗粒处理组的FG细胞培养上清中的LDH活性也随之增加,具有一定的剂量效应关系, LDH相对活性最低在25%左右,最高在50%左右。这表明FG细胞的细胞膜的完整性发生了改变,使存在于细胞质内的LDH泄露到培养基中。Hochest33342/PI双荧光染色的结果也表明,3种粒径的ZnO颗粒都可以引起FG细胞的凋亡和坏死。随着浓度的增高,每种粒径的ZnO颗粒所引起的FG细胞的凋亡和死亡的细胞总数都逐渐增加,具有明显的剂量效应关系。而且,即使每种粒径的ZnO颗粒在高浓度(100和50μg/ml)时出现较多的死细胞,但其毒性都是以诱导细胞凋亡为主。在所检测的暴露浓度条件下,3种粒径的ZnO颗粒虽然诱导了FG细胞的凋亡,但还没有引起基因组DNA的片段化。叁种粒径ZnO颗粒在PBS中的锌离子释放量的检测结果表明30nm、80-150nm和2μm的ZnO颗粒在PBS中都会溶解出Zn~(2+),且随着ZnO颗粒浓度的增高,释放量也逐渐增加。MTT法检测不同浓度氯化锌(ZnCl_2)对FG细胞的细胞毒性结果表明,ZnCl_2对FG细胞具有明显的生长抑制作用,而且随着ZnCl_2浓度的升高,抑制作用逐渐增强,细胞的活性逐渐降低。30nm、80-150nm和2μm的ZnO颗粒及ZnCl_2的IC50值分别为0.08、0.072、0.063、0.075μmol/ml,而30nm、80-150nm和2μm的ZnO颗粒在最高浓度100μg/ml时Zn~(2+)的释放量分别为:1.12±0.054,1.86±0.08和1.54±0.065μg/ml,即0.023±0.001,0.029±0.0012和0.017±0.0008μmol/ml均没有超过0.03μmol/ml,与其IC_(50)值相比,此浓度不足以引起实验中所测得的毒性,因此,我们认为ZnO颗粒所释放的Zn~(2+)产生的毒性只是导致ZnO颗粒产生毒性的部分原因。本文比较了经超声波处理和未处理的30nm、80-150nm和2μm的ZnO颗粒对FG细胞的毒性,发现经超声波处理的3种ZnO颗粒对FG细胞的毒性效应要明显高于未经超声波处理的3种粒径ZnO颗粒的毒性,且这种差异在高浓度(100和50μg/ml)时更为显着,这表明,超声波处理后有利于ZnO颗粒的分散,使其易于穿透细胞膜,而不经超声波处理的ZnO颗粒会团聚成较大的团块,从而降低其穿透细胞膜的能力和数量,因而毒性降低。本文还发现血清有助于降低ZnO颗粒的团聚程度,从而影响ZnO颗粒的细胞毒性结果。总之,ZnO颗粒的团聚程度也是影响其毒性效应的重要因素。3种粒径ZnO颗粒对斑马鱼的胚胎毒性结果表明,3种粒径的ZnO颗粒均会影响斑马鱼胚胎的发育,造成处理组斑马鱼胚胎9h时发育停滞,而且发育停滞的胚胎在24h后大部分死亡;在受精72h后,3种粒径ZnO颗粒处理组胚胎的孵化率相比对照组出现了明显的降低;3种粒径ZnO颗粒对斑马鱼胚胎的致畸率和死亡率没有明显的浓度依赖性,且9h时的致畸率和24h时的死亡率相似;3种粒径ZnO颗粒对斑马鱼胚胎的孵化率的影响具有明显的浓度依赖性,在高浓度(100和50μg/ml)时,斑马鱼胚胎的孵化率都为零,但是在10μg/ml时,30nm、80-150nm和2μm的ZnO颗粒处理的斑马鱼胚胎的孵化率分别为0,11.54%±2.2%,36.7%±7.3%,说明随着ZnO颗粒粒径的减小,对斑马鱼胚胎孵化率的影响增大。总之,本文通过比较研究3种粒径ZnO颗粒对体外培养FG细胞的细胞毒性及其对斑马鱼胚胎的胚胎毒性,发现这3种粒径的ZnO颗粒对FG细胞的细胞毒性与其粒径大小、所释放的Zn2+浓度和团聚程度有关。粒径越小,毒性越大。3种粒径ZnO颗粒对斑马鱼胚胎的毒性主要表现为导致发育停滞、死亡和降低孵化率。(本文来源于《中国海洋大学》期刊2012-03-27)
张俊玲,施志仪,程琦,翟万营[10](2011)在《IGF-Ⅰ及其受体基因在牙鲆胚胎发育过程中的表达图式》一文中研究指出胰岛素样生长因子-Ⅰ(insulin-like growth factor Ⅰ,IGF-Ⅰ)是脊椎动物生长发育的重要调控因子,其生物学功能主要通过与其特异的膜受体(IGF-Ⅰ receptor,IGF-IR)结合而调节。因此,IGF-Ⅰ及其受体表达特征的分析对于阐述IGF系统调控的发育过程具有重要的意义。本研究采用荧光实时PCR方法,以不同发育时期的牙鲆(Paralichthys olivaceus)胚胎为材料,分析了胰岛素样生长因子-Ⅰ(IGF-Ⅰ)及其两种受体基因在鱼类胚胎发育过程中的表达图式。结果显示,牙鲆IGF-Ⅰ、IGF-IR-1和IGF-IR-2基因均有母源转录本,且各基因的表达在胚胎发育的不同阶段具有明显的发育性变化。IGF-Ⅰ基因在早期胚胎发育阶段仅有少量的mRNA存在,而合子基因的表达在晶体出现至出膜前阶段逐步增加。两种IGF-Ⅰ受体基因则展现出迥然不同的表达时序。IGF-IR-1基因在受精卵、卵裂及囊胚期的早期胚胎发育中有相对较少的转录本,至原肠期其合子基因强烈表达,且在神经胚、晶体出现、心跳和出膜前各阶段均有高量的表达;相反,IGF-IR-2基因在受精卵至原肠期的早期胚胎中有丰富的转录本,但合子基因的表达在后期胚胎形成中却相对降低,暗示了二者可能在调节牙鲆胚胎发育中起着不同的作用。(本文来源于《中国水产科学》期刊2011年06期)
牙鲆胚胎论文开题报告
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
研究了盐度对牙鲆受精卵的沉浮性及早期胚胎发育的影响。结果表明:受精卵在海水盐度30以上为浮性,盐度27.5时为悬浮,盐度25以下为沉性;孵化期适盐范围为25~45,最适盐度范围为30~35;在盐度15~20和45~50下,牙鲆受精卵孵化率显着下降,仔鱼的畸形率大幅上升;牙鲆原肠期对盐度变化的耐受力高于囊胚期,囊胚期高于4细胞期。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
牙鲆胚胎论文参考文献
[1].陈张帆,宋莉妮,王鹏飞,田永胜,王文文.牙鲆胚胎低温处理下内参基因筛选及CIRP和Hsp70基因表达分析[J].农业生物技术学报.2018
[2].段秀娟,马玉和,任延军.牙鲆早期胚胎发育的盐度胁迫研究[J].天津农业科学.2015
[3].陈洁,鲍宝龙.牙鲆胚胎阶段pax6、tbx3和rx1基因的表达[J].上海海洋大学学报.2015
[4].王玉芬,司飞,孙朝徽,宋立民,姜秀凤.盐度对全雌牙鲆胚胎发育和仔鱼活力的影响[J].水产科学.2014
[5].Manish,Raj,Pandey.利用牙鲆鳃细胞FG和斑马鱼胚胎对氨基甲酸酯类杀虫剂残杀威和西维因的细胞毒性、遗传毒性和致畸性的毒性评估研究[D].中国海洋大学.2013
[6].翟亚楠.叁种增塑剂(DEHP、DBP和TBAC)对牙鲆鳃细胞FG和斑马鱼胚胎的毒性作用研究[D].中国海洋大学.2013
[7].隋娟,徐世宏,王文琪,马道远,肖志忠.牙鲆与夏鲆杂交及回交子代胚胎发育及早期生长比较[J].海洋科学.2012
[8].陈朴贤.犬齿牙鲆胚胎及仔、稚、幼鱼形态发育观察[J].海洋科学.2012
[9].韩利.人工纳米氧化锌颗粒对牙鲆FG细胞和斑马鱼胚胎的毒性及其毒性作用机制[D].中国海洋大学.2012
[10].张俊玲,施志仪,程琦,翟万营.IGF-Ⅰ及其受体基因在牙鲆胚胎发育过程中的表达图式[J].中国水产科学.2011
标签:牙鲆; 胚胎; 内参基因; 热休克蛋白基因70(Hsp70);