本文主要研究内容
作者(2019)在《Design and Development of a Lens-walled Compound Parabolic Concentrator-A Review》一文中研究指出:Compound parabolic concentrator(CPC) is a representative among solar concentrators, one of whose disadvantage is that the concentration ratio limits the half acceptance angle. Based on this, researchers put forward a novel structure, named the lens-walled CPC. This paper reviews the design and development of lens-walled CPC. The structure of the symmetric and asymmetric lens-walled CPC and the improved ones are presented, and their indoor and outdoor performances are also illustrated. The lens-walled CPC has a larger half acceptance angle and a more uniform flux distribution that is suitable for PV application. Furthermore, the life-cycle assessment for building integrated with PV is performed and it shows that the energy payback time of such integrated system has a significant advantage. In addition, future research areas are also indicated that may provide more functions and more stable performance. The design methods and developmental directions given in this study would provide many references in solar optical research and solar concentrator optimization.
Abstract
Compound parabolic concentrator(CPC) is a representative among solar concentrators, one of whose disadvantage is that the concentration ratio limits the half acceptance angle. Based on this, researchers put forward a novel structure, named the lens-walled CPC. This paper reviews the design and development of lens-walled CPC. The structure of the symmetric and asymmetric lens-walled CPC and the improved ones are presented, and their indoor and outdoor performances are also illustrated. The lens-walled CPC has a larger half acceptance angle and a more uniform flux distribution that is suitable for PV application. Furthermore, the life-cycle assessment for building integrated with PV is performed and it shows that the energy payback time of such integrated system has a significant advantage. In addition, future research areas are also indicated that may provide more functions and more stable performance. The design methods and developmental directions given in this study would provide many references in solar optical research and solar concentrator optimization.
论文参考文献
论文详细介绍
论文作者分别是来自Journal of Thermal Science的,发表于刊物Journal of Thermal Science2019年01期论文,是一篇关于,Journal of Thermal Science2019年01期论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自Journal of Thermal Science2019年01期论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。