大间距分类器论文-张伟伟,陈秀宏

大间距分类器论文-张伟伟,陈秀宏

导读:本文包含了大间距分类器论文开题报告文献综述及选题提纲参考文献,主要关键词:大间距分类器,支持向量机,非线性鉴别分析,核方法

大间距分类器论文文献综述

张伟伟,陈秀宏[1](2009)在《基于核的大间距分类器》一文中研究指出提出了一种新的非线性鉴别分析算法-基于核的大间距分类器,该算法的主要思想是将原始样本映射到更高维的空间中,利用核技术对传统的大间距分类算法进行改进,在新的高维空间中利用再生核技术寻找核鉴别矢量,使得在这个新的空间中核类内散度尽可能的小。在ORL人脸数据库上做实验,分别对识别率及识别时间做分析,可以看出本方法的优势所在。(本文来源于《计算机工程与设计》期刊2009年19期)

陈才扣,杨静宇[2](2007)在《Fisher大间距线性分类器》一文中研究指出作为一种着名的特征抽取方法,Fisher线性鉴别分析的基本思想是选择使得Fisher准则函数达到最大值的向量(称为最优鉴别向量)作为最优投影方向,以便使得高维输入空间中的模式样本在该向量投影后,在类间散度达到最大的同时,类内散度最小。大间距线性分类器是寻找一个最优投影矢量(最优分隔超平面的法向量),它可使得投影后的两类样本之间的分类间距(Margin)最大。为了获得更佳的识别效果,结合Fisher线性鉴别分析和大间距分类器的优点,提出了一种新的线性投影分类算法——Fisher大间距线性分类器。该分类器的主要思想就是寻找最优投影矢量wbest(最优超平面的法向量),使得高维输入空间中的样本模式在wbest上投影后,在使类间间距达到最大的同时,使类内离散度尽可能地小。并从理论上讨论了与其他线性分类器的联系。在ORL人脸库和FERET人脸数据库上的实验结果表明,该线性投影分类算法的识别率优于其他分类器。(本文来源于《中国图象图形学报》期刊2007年12期)

大间距分类器论文开题报告

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

作为一种着名的特征抽取方法,Fisher线性鉴别分析的基本思想是选择使得Fisher准则函数达到最大值的向量(称为最优鉴别向量)作为最优投影方向,以便使得高维输入空间中的模式样本在该向量投影后,在类间散度达到最大的同时,类内散度最小。大间距线性分类器是寻找一个最优投影矢量(最优分隔超平面的法向量),它可使得投影后的两类样本之间的分类间距(Margin)最大。为了获得更佳的识别效果,结合Fisher线性鉴别分析和大间距分类器的优点,提出了一种新的线性投影分类算法——Fisher大间距线性分类器。该分类器的主要思想就是寻找最优投影矢量wbest(最优超平面的法向量),使得高维输入空间中的样本模式在wbest上投影后,在使类间间距达到最大的同时,使类内离散度尽可能地小。并从理论上讨论了与其他线性分类器的联系。在ORL人脸库和FERET人脸数据库上的实验结果表明,该线性投影分类算法的识别率优于其他分类器。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

大间距分类器论文参考文献

[1].张伟伟,陈秀宏.基于核的大间距分类器[J].计算机工程与设计.2009

[2].陈才扣,杨静宇.Fisher大间距线性分类器[J].中国图象图形学报.2007

标签:;  ;  ;  ;  

大间距分类器论文-张伟伟,陈秀宏
下载Doc文档

猜你喜欢