上海顶新工程规划设计有限公司上海201315
摘要:地基是支撑建筑基础的土地或岩体。水利水电工程地基建设的好坏会影响着整个工程的造价和建筑结构,以及工程安全性。因此,相关施工作业人员的操作技术需要严格的要求。通过水利水电工程设计中的地基处理技术,探讨我国当前水利水电工程设计中的地基类型,分析水利水电工程设计中的几种常遇的地基处理技术。
关键词:水利水电工程;地基处理技术;注意事项
引言
水利工程的施工管理是我国国家建设之中的重要项目,施工管理的质量好坏会影响水利工程的施工质量和人民群众的生命安全。但是,在现今的水利工程建设之中,工程的施工质量依旧存在一些问题,这些问题必将会影响到整个水利水电工程的工作进度,甚至是影响建筑质量。其中对于水利工程建设来说,第一要义就是处理好地基。不同的地基有不同的地基处理方式与技术,要想达到设计的标准和保障工程的质量,就必须选择正确的处理技术。
1分析地基工程施工技术在整个水利水电工程中的重要作用
地基在任何工程中的重要作用不言而喻,因而就水利水电工程来看,由于其地基的地质条件往往较为复杂,且大都在不良地质条件下进行,因此其在水利水电工程的作用亦是如此。而地基施工技术作为确保地基工程质量的关键所在,所以只有在水利水电工程中切实加强地基工程施工技术的应用,才能最大化的避免地基质量问题的出现,进而最大化的确保整个水利水电工程质量。由此可见,地基工程施工技术在整个水利水电工程中具有十分重要的作用。
2水利水电工程地基施工的特点
水利水电工程的地基施工具有的难度性较高,主要体现在地基中的土壤含水的比例相对较高、地基的承载力也是有限的、以及可压缩性高等特点。这些特点。土壤的含水量大、承载力有限及可压缩性高等特点。水利水电地基施工人员需要对地基进行特殊的处理,以此来减低土壤的含水量、提高承载力、降低土壤压缩性的目的。想要提高地基的稳固性首先要做好排水的工作,在水利工程中的地基多为软土,对于排水的工作增加了难度,如果排水不当,会对阻碍水利水电工程的顺利进行。所以,水利水电的地基处理工作对于整体的建设尤为重要,提高水利水电地基的处理技术,成为了水利工程中的重要研究课题。
3水利水电工程设计中常见地基类型与处理技术
每个地区的地势地形是不同的,因此水利水电工程的施工要符合地区的特殊性。建筑过程中要对地基进行前期的处理,才能开启施工。在我国水利水电工程建设中,有以下几大常见的地基类型:
3.1可液化土层
可液化土层是指处于饱和状态的沙土和粉土在外力干扰下以致于孔隙水压力上升,最终导致土层的抗剪强度降低甚至是消失的一种土层。在这种土层上施工建设及其容易失败,如果不及时采用相应的地基处理技术对土层进行改造的话,对地基上层的建筑埋下安全隐患,严重的话会导致整体建筑的坍塌。
3.2淤泥质软土
淤泥质软土分为淤泥和淤泥质土两种。是一种特殊却分布范围广的一种岩石。在静水或缓慢的流水环境中沉积,经过物理,化学和生物作用,形成未固结的软弱细粒。是一种含水量高而抗剪强度低的土层,这种土层一旦遇到较大压力就会导致土壤的流动,总而使得整个地基的变形,最终影响地基上层建筑物的安全性。在我国水利水电工程施工建中典型的类型有淤泥质土、腐泥和泥碳等,这种淤泥质软土主要存在一些土坝坝基上,稳定性极差。
3.3岩溶
岩溶指的是可溶性岩石,各种各样的奇怪状,例如洞穴,石芽,石沟,石林,溶洞,地下河,峭壁。岩溶地质相当难处理,虽然在水利水电工程中不常见。相应的地基处理技术是采取置换、防渗堵漏等处理方式,用来确保地基的稳定性。
3.4深覆盖层地基
深覆盖层地基主要存在于河流流域,其主要形成原因是由于河流的冲击使得各种碎石、砂石或者是泥石等长时间的堆积,进而造成该地域堆积厚度过大。该地基建设的稳定性和防渗性很容易受影响,并且很难进行后期处理,置换与填充的难度也都较大。
3.5饱和松散砂土
饱和松散砂土的承载力强度和稳定性很差,一旦受到外力的作用就会产生错位或是变形,严重时影响地基稳定与安全,因此在此类地形上必须依靠地基处理技术进行加固处理。水利水电工程设计中地基处理技术包括了深层搅拌桩技术、高压喷射注浆法、软土地基处理技术方式、组合锤法地基处理技术、CFG桩复合技术这五种技术。它们可以运用到不同情况的地基建设中,也可以相互结合使用在复杂的施工过程中。地基的处理技术原则就是,按照地层建筑对地基承受要求,通过技术处理使其承载力加强,防止倒塌,沉降的现象的出现。我国的建筑业的快速发展对地基处理技术的要求越来越高,地基处理技术只有不断优化,专业化,针对性更高,才能更好的达到所要的效果。我国的水利工程项目的增加,也越来越有复杂性,只有不断的优化改进和创新,满足水利工程建筑的需要。
4地基处理技术在水利水电地基工程中的应用
地基开挖之后,就应结合实际采取针对性的地基处理技术,以下介绍一下地基处理技术在水利水电地基工程中的具体应用。
4.1换填与强夯技术在水利水电软基处理中的应用
为确保水利水电工程地基承载性能得到有效的提升,就应在挖出较薄的淤泥层之后,采取换填的技术,不仅能提高其透水性,还能实现软质地基构造的重新组合,这就需要在排除淤泥和泥炭等软土之中,采取换填灰土、砂土、粗砂、水泥的方式达到加固地基的目的。但在换填后,虽然其承载性能比原有的地基承载性能有了极大的提升,但为了进一步夯实地基的加固质量,还应采取强夯技术,利用强夯锤对其进行击打,地基在强夯力的作用下达到夯实地基的目的。
4.2加筋技术在水利水电软基处理中的应用
加筋技术也是水利水电软基处理中的重要技术。在利用加筋技术时,重要是在地基表面平铺交友较高强硬度和土工合成材料,从而达到平摊荷载和减少破坏力和增加地基的荷载承载性能的目的。有时还可以将具有较强抗拉性能的土工合成材料埋设到地基的内部,使其与土层颗粒摩擦后二者结为一个有机的整体,从而促进整个地基稳定性的的提升。如图1
4.3高压喷射灌浆技术在水利水电软基处理中的应用
对木质素类、聚氨酯类等各种化学浆以及粘土水泥浆、粘土浆、水泥砂浆、水泥浆进行液化,之后为加固淤泥的软土地基在软土介质中高压注入液体。打孔埋管灌浆以及无损贴嘴灌浆为高压喷射灌浆法较为常见的方法,而就两者相比来看,无损贴嘴的灌浆法更具有的发展前景更广阔。
图1加筋技术
4.4土方开挖技术在水利水电地基工程中的应用
土方开挖是整个水利水电地基工程施工的基础性环节。因而在开挖过程中,应始终结合确定的开挖方案进行开挖,并紧密结合地形地质勘查资料,切实做好地面排水系统的建设,及时处理好开挖的土壤,在开挖过程中,应采取机械开挖为主和人工开挖为辅的方式进行,但必须确保地基土结构得到有效的保护,并尽可能地降低地下水水位,这就是设置集水坑,将开挖的地下水进行集中处理,但必须确保集水坑的开挖应在地面500厘米以下进行,最大化的确保地基工程的开挖质量。如图2
结语
在水电工程中,地基是整个施工作业中的一个核心,如果施工步骤的不谨慎或者出了查错,施工过程的质量就没有了保证,费财费力费时间,甚至会危及到施工队伍人员的生命安全。加强专业技术能力,保证工程的安全与质量。
图2:土方开挖流程图
参考文献
[1]金梁瑜,王飞.水利工程施工中软土地基处理技术[J].城市建设理论研究:电子版,2014(04):20-22.
[2]李新旺.对水利施工中软土地基处理技术的研究[J].建材与装饰,2012(14):47-48.
[3]刘海舰,吴仍芳.基于水利水电工程施工中不良地基处理问题研究[J].江西建材,2014(2).