本文主要研究内容
作者(2019)在《Effect of Different Trench Lips on Downstream Film Cooling Effectiveness and Flow Fields》一文中研究指出:In the present study, the trenched configurations, including traditional trench(TT), fillet trench(FT) and varying-radius trench(VRT), are numerically investigated at different conditions in terms of downstream cooling effectiveness and flow fields. Different trench width and fillet radii are discussed at different blowing ratios and density ratios. Results show that the downstream lips mainly change the downstream pressure distributions and then change the lateral coolant distribution. The downstream fillet can reduce the penetration of coolant and improve laterally averaged effectiveness in the configurations with the narrow trench at modest blowing ratios. The enhancement of cooling effectiveness near the centerline plane is the positive effect of downstream fillet. This enhancement becomes more obvious with the increase of fillet radius, except for high blowing ratio. The fillet lip, compared with TT cases, also leads to a decline of coolant lateral spread for configurations with the wide trench and large radius, and more decline in the lateral direction deteriorates downstream overall cooling performance. Besides, the increase of density ratio contributes to a higher cooling effectiveness for fillet trench configurations. VRT cases guarantee the streamwise extension and lateral spread of coolant, therefore improving downstream cooling effectiveness further at blowing ratio M=1.0 and 1.5.
Abstract
In the present study, the trenched configurations, including traditional trench(TT), fillet trench(FT) and varying-radius trench(VRT), are numerically investigated at different conditions in terms of downstream cooling effectiveness and flow fields. Different trench width and fillet radii are discussed at different blowing ratios and density ratios. Results show that the downstream lips mainly change the downstream pressure distributions and then change the lateral coolant distribution. The downstream fillet can reduce the penetration of coolant and improve laterally averaged effectiveness in the configurations with the narrow trench at modest blowing ratios. The enhancement of cooling effectiveness near the centerline plane is the positive effect of downstream fillet. This enhancement becomes more obvious with the increase of fillet radius, except for high blowing ratio. The fillet lip, compared with TT cases, also leads to a decline of coolant lateral spread for configurations with the wide trench and large radius, and more decline in the lateral direction deteriorates downstream overall cooling performance. Besides, the increase of density ratio contributes to a higher cooling effectiveness for fillet trench configurations. VRT cases guarantee the streamwise extension and lateral spread of coolant, therefore improving downstream cooling effectiveness further at blowing ratio M=1.0 and 1.5.
论文参考文献
论文详细介绍
论文作者分别是来自Journal of Thermal Science的,发表于刊物Journal of Thermal Science2019年02期论文,是一篇关于,Journal of Thermal Science2019年02期论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自Journal of Thermal Science2019年02期论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。