光子晶体光纤的最新进展

光子晶体光纤的最新进展

一、Recent Progress of Photonic Crystal Fibers(论文文献综述)

陈伟,李进延,李诗愈,雷道玉,戴能利,陆培祥[1](2007)在《光子晶体光纤及其技术进展》文中研究表明光子晶体光纤是国际上当前的研究热点,其非凡特性给新型光器件注入了新的活力。本文从光子晶体光纤制备工艺技术、产品技术指标等方面阐述了国内外光子晶体光纤的研究最新进展,并阐述了国际上光子晶体光纤在高功率光纤激光器、光纤放大器、超连续光谱、飞秒激光、全光开关、色散补偿等光器件领域的重要应用及最新成果,最后提出了光子晶体光纤应用技术发展趋势。

陈婉,董淑福,赵宇波,刘红军,周俊[2](2007)在《光纤参量放大器的最新进展》文中认为从单抽运和双抽运光纤参量放大器两种结构展开论述,着重介绍了光纤参量放大器对信号的放大能力及双抽运光纤参量放大器作为波分复用或密集波分复用系统放大器的可能性和所面临的问题,表明具有高增益和宽带宽的光纤参量放大器有可能成为新一代的光放大器。最后介绍了波长转换器方面的最新进展及双抽运偏振态相互正交时的光纤参量放大器在波长转换方面的独特性能。

邹丽娜,郑咏梅,施宏艳,申铉国[3](2006)在《光子晶体的研究新进展及应用》文中研究表明光子晶体具有调节光子运动状态的特性,在光通信、医学和国防科技等领域具有非常广阔的应用前景。简要介绍了光子晶体的主要特征及制备方法,总结了基于光子晶体的光纤,激光器,滤波器和集成光路的工作机理和最新研究成果。

唐仁杰[4](2005)在《光子晶体光纤研制的最新进展》文中研究说明2004年以来,国际上在光子晶体光纤研制方面取得突破性进展。折射率传导型光子晶体光纤在1 310nm和1 550nm波长的衰减系数分别降低到 0.35dB/km和0.205dB/km,达到常规单模光纤水平;该类新型光纤的抗弯曲、 PMD等特性也达到或者优于常规单模光纤水平。光子带隙传导型PCF的最低衰减又降低了一个数量级。本文综述这些创记录的最新成果。

李元鹏[5](2004)在《面向下一代网络的光纤光缆和通信电缆技术探讨》文中提出本文简要回顾了近期国内对下一代网络的讨论及专家论述,介绍了国际上NGN的定义及研究信息,分析了涉及对光纤光缆和通信电缆传输的要求,探讨了下一代网络建设中有关光纤光缆和通信电缆的一些技术问题,并简要说明了光子晶体光纤的发展及前景。

王海洋[6](2021)在《40 GHz锁模皮秒激光信号源关键技术与应用研究》文中研究说明锁模光纤激光器所产生的高重频皮秒脉冲不仅可以作为超高速、大容量、长距离光纤通信系统理想信号源,且在量子通信领域极具应用潜力。本论文围绕锁模皮秒激光信号源中的关键技术展开深入研究,主要包括被动锁模环形光纤激光器及其特殊输出模式、40 GHz高阶主动锁模光纤激光器、光纤激光器系统中偏振态的控制与稳定,并对锁模皮秒光纤激光器在全光时钟提取和量子光源制备方面的全新应用进行探索与研究。取得的主要创新性成果如下:(1)基于半导体光放大器的非线性偏振旋转效应,提出并研制一种双放大器结构的锁模光纤环形激光器,实现了稳定的被动锁模脉冲、调Q脉冲和矩形脉冲等多种形式的输出。所产生的矩形脉冲,与被动锁模激光器中的耗散孤子共振相比无明显的峰值功率钳位,其脉冲宽度可在500 ps~165 ns大范围内连续可调。(2)提出并研制一种基于Muller矩阵模型的开环控制高速稳偏器,对任意偏振态的稳定平均误差约为0.035 rad,稳偏时间小于300μs,比闭环控制稳偏器(几十ms)快数十倍。应用该系统实现了对突发干扰的偏振态稳定,并且成功提升了干扰条件下偏振编码通信系统的信号质量。(3)提出并研制一种基于SOA的NPR效应的腔内掺铒光纤放大器增强型高阶主动锁模光纤环形激光器,实现了1.36 ps脉宽、GHz量级高重频锁模脉冲输出。通过调整系统参数,分别获得了2、4、5、6、7、8、10阶的有理数谐波锁模脉冲输出。并通过高阶主动锁模实现了40 GHz量级的皮秒脉冲序列输出,输出射频谱中信噪比超过40 d B,该信号源可直接应用于超高速光通信系统(例如光时分复用系统中)。(4)设计完成一种基于高阶主动锁模光纤环形激光器的新型全光时钟提取方案,成功实现了对时钟频率为6 GHz和12 GHz的伪随机码调制的非归零光信号全光时钟提取,获得了6 GHz和12 GHz的光时钟信号。相较于其他非归零信号的时钟提取方案,该方案不需要对非归零信号在腔外进行预处理来增强时钟分量,大大降低了系统复杂度。(5)基于主动锁模光纤激光器,应用脉冲衰减法成功制备出一种具有理想泊松分布的单光子源,速率约10 k/s,可直接用于基于单光子的量子密码通信。进而利用I型BBO晶体对1552 nm锁模激光进行二倍频,获得了776 nm的倍频光,再通过II型BBO晶体参量下转换,制备出1552 nm通信波段的纠缠态光信号,可作为量子通信纠缠态光源。本文研制成功的高重频主动锁模皮秒激光信号源,具有脉冲短(~1 ps)、重频高(40 GHz及以上)、重频可调及稳定性好等优势,是未来超高速光通信的理想信号源。同时,利用该信号源,可直接获得频率可调的单光子源,满足高速量子密钥分发的需求;亦可通过非线性过程制备纠缠态,应用于量子隐形传态。

徐侃迪[7](2021)在《基于微流控的光子晶体光纤传感特性研究》文中提出

胡思琪[8](2021)在《基于荧光纳米材料的新型光纤传感器设计与应用研究》文中认为物联网(IoT)品类在过去十几年中呈指数增长,并从各个方面显着重塑了人类生活。而兼具通信和传感功能的光纤传感器将逐步成为连接人与整个世界的桥梁。当前,丰富多样的光纤传感器可以为各种待测量提供理想且高性能的感知方案。值得注意的是,基于新型材料敏感涂层的光学传感器是光纤传感技术的发展趋向之一。本论文就将以荧光纳米材料与光纤技术相结合为出发点,深入研究基于荧光纳米材料的光纤器件的设计与应用,研制了基于量子点荧光纳米材料的微纳光纤气体传感器以及基于上转换纳米粒子荧光增强的微纳光纤相对湿度(RH)传感器,并提出了基于多粒度量子点荧光纳米材料的多参量光纤传感器设计。本论文首先简单介绍了本课题的研究背景与意义,分别概述了荧光纳米材料科学和光纤传感技术的研究现状,并列出本论文的主要研究内容和创新点。接着从三个方面探讨了如何有效地将荧光纳米材料应用于光纤传感技术,包括可适配荧光纳米材料的光纤结构及系统架构、基于荧光纳米材料的光纤器件的作用机制和原理以及基于荧光纳米材料的光纤器件的制备工艺。本论文研发了一种基于量子点荧光纳米材料的微纳光纤传感器,其具有微型化、质量轻、结构简单、可批量重复制备、响应快速、抗振动弯曲干扰等特点,可以实现超低浓度的乙醇蒸气探测。论文阐述了该传感器的结构原理和制备流程,并通过具体实验验证了该传感器的抗弯曲特性、灵敏度特性、温度响应特性和时间响应特性。另外,本论文还创新地自主研发了精准可控的光纤电动涂敷系统,实现了材料涂敷型光纤传感器的重复批量制备。本论文还提出并验证了一种基于上转换纳米粒子荧光增强的微纳光纤RH传感器。通过自主合成的纤维素液晶膜来增强上转换粒子荧光,大大提高了传感信号的信噪比和传感器灵敏度,且可抑制温度交叉敏感。通过具体实验验证了光信号信噪比的提升,以及传感器的灵敏度特性和温度响应特性。该工作为纤维素液晶膜这种天然的多孔周期性结构在光纤传感技术领域的应用提供了新思路,大大降低了高性能传感器的制备成本。论文最后提出了基于多粒度量子点荧光纳米材料的多参量光纤传感器设计。该结构主要包括多量子点掺杂的光子晶体光纤和复合光纤光栅。论文阐述了该传感器的结构设计和工作原理,并给出了可行的制备方案。通过一系列仿真分析对光子晶体光纤和复合光纤光栅进行了初步的优化设计。详细阐述了该传感器的多参量探测原理,并提出了进一步改进的优化构想,为更多种类的荧光纳米材料应用于光纤多参量传感探测提供了新思路。

唐子娟[9](2021)在《基于光子晶体光纤的新型光纤激光器和传感器的研究》文中进行了进一步梳理光子晶体光纤(Photonic crystal fiber,PCF)凭借其结构设计可控维度多、自由度大,能够实现传统光纤所无法实现的独特特性,如无尽单模特性、高双折射特性、高非线性特性等,而且其多孔结构也为气体、液体及金属等材料的填充修饰提供了天然的通道,成为当今光纤及光器件领域蓬勃发展的研究方向。基于PCF的滤波器,呈现出高的热稳定性、高消光比、结构紧凑等优势,为解决基于传统光纤滤波器的光纤器件中存在的诸多问题,提供了新的解决思路。本学位论文在国家自然基金面上项目等项目基金的支持下,以新型PCF滤波器研究为切入点,提出并研制出多种高性能连续波多波长光纤激光器,以及高灵敏度、结构简单、抗温度干扰的矢量曲率、拉力光纤传感器,并针对生物医学领域体液p H、呼吸氨浓度的测量需求,研制出具有生物兼容性的新型光纤生物传感器。论文取得的主要创新成果如下:1.首次提出并研制出一种基于拉锥型三芯PCF滤波器的可调谐掺铒多波长激光器。理论和实验相结合,研究拉锥型三芯PCF滤波器的拉力调谐特性。基于拉锥型三芯PCF滤波器,构建环形腔掺铒多波长激光器,实现了调谐范围分别为22.22 nm、14.36 nm、8.08 nm的可调谐单、双、三波长激光输出。其中,双波长激光实现的边模抑制比高达52 d B,波长间隔分别为自由谱宽两倍、三倍和四倍。与已报道的绝大多数基于特种光纤滤波器的激光器相比,该激光器具有优异的可调谐特性及高的激光边模抑制比,在光通信及微波光子学等领域具有广泛的应用前景。2.提出并研制出一种基于四叶草PCF模式干涉滤波器的可切换多波长激光器。建立了四叶草PCF滤波器的模式干涉理论模型,理论与实验相结合,分析滤波器的模式干涉特性及传输特性。以此为基础,构建了基于四叶草PCF滤波器的可切换掺铒多波长激光器,实现了边模抑制比达50 d B、峰值功率波动小于1.5 d B的可切换六波长激光器。与相似结构的激光器相比,边模抑制比提高了10 d B、峰值功率波动降低了2 d B。通过对滤波器施加轴向拉力,实现了波长间隔可调谐的双波长激光输出,调谐范围达41 nm,比已报道的多数具有相似结构的多波长激光器提高近一倍。3.设计并研制出一种基于拉锥型双芯PCF的弯曲曲率和应力双参量传感器。通过在熔接点处拉锥,提高了模式干涉强度;采用非对称结构的双芯PCF,实现了双弯曲方向的矢量曲率感测,感测灵敏度分别达18.29 nm/m-1和-18.13 nm/m-1。同时,该传感器对应力改变也具有良好的线性响应,实现的最高应力灵敏度为-10.65 pm/με。利用矩阵分析法,排除温度在矢量弯曲测量和拉力测量中的影响。相较其他矢量弯曲传感器,提出的传感器兼具结构简单、高灵敏度、低温度交叉敏感性且可实现多参量同时传感的显着优势。4.设计并研制出一种基于三芯PCF-赛格耐克环结构的高灵敏度拉力传感器。利用在拉力作用下三芯PCF耦合特性的改变,研制出三芯PCF拉力传感器。传感器灵敏度高达-29.8 pm/με,高于近年来报道的多数基于PCF的拉力传感器。由于三芯PCF由纯石英制成,传感器展现出极低的温度交叉灵敏度0.05με/℃。为进一步提升传感器的灵敏度,从理论上系统研究了三芯PCF模式耦合特性对传感器灵敏度的影响,研究结果表明,当光纤的占空比为0.84,理论上,在波长1561.47 nm处可将灵敏度提升两倍,为后续开展高灵敏度应力传感器提供了理论指导。5.设计并研制出一种TPPS敏感膜功能化的四叶草PCF氨气传感器。理论与实验相结合,研究TPPS敏感膜对氨气浓度的响应特性。以此为基础,利用完全填充法将TPPS染料填充至四叶草PCF包层的大空气孔中,研制出TPPS敏感膜功能化的四叶草PCF氨气传感器。实现了在0-10 ppm浓度范围内氨气的准确检测,检测精度达0.15 ppm。传感器的响应时间为150 s,且通过盐酸后处理能够实现可重复使用。TPPS染料和石英光纤均为细胞无毒性材料,满足生物兼容性氨气传感需求。本研究成果打破了目前氨气传感器检测精度无法满足生物氨气检测需求的瓶颈,对推进适合生物检测氨气传感器的发展具有重要的意义和实用价值。6.设计并研制出一种无染料的U形光纤pH传感器。采用溶胶凝胶技术将乙基纤维素包裹在二氧化硅网状基质中形成无染料的p H敏感膜。实验研究表明所制备的敏感膜具有稳定的不随p H变化的吸收特性,常温下成分均一的特性,和无细胞毒性。将该敏感膜涂覆在U形光纤上,研制出无染料的U形光纤p H传感器。实验研究了传感器的灵敏度、测量范围、精度、时间稳定性、温度稳定性及测量一致性。研究结果表明,传感器对在4.5-12.5范围内变化的溶液p H值具有良好的线性响应,在7.5-12.5 p H范围内的灵敏度为-0.42 d Bm/p H,在4.5-7.5 p H范围内为-0.14 d Bm/p H。此外,传感器展现出高的温度稳定性,在21℃-39℃温度变化范围内的p H值改变0.12 p H且不同时间段测量的p H值基本一致。传感器的测量范围高于已报道的多数无染料光纤p H传感器,且具有生物兼容性;实现的分辨率达0.02 p H,满足生物医学领域多数体液测量的精度需求。本研究成果为p H光纤生物传感器的发展及在生物医学领域的应用具有重要意义和应用价值。

李儒颂[10](2021)在《1.3μm高速光子晶体面发射激光器与拓扑面发射激光器研究》文中进行了进一步梳理随着智慧城市、5G网络、人工智能、云计算和大数据中心等新一代信息技术的快速发展,网络数据流量在近年来呈现出指数增长趋势,促使光互连技术向更高速率、更大容量和更低功耗的方向发展。高速面发射激光器作为该领域关键核心器件,具有重要的研究价值和广阔的应用前景。垂直腔面发射激光器(VCSELs)由于长波长DBR难以外延生长且具有较大的损耗和串联电阻,因而还难以满足应用需求。而光子晶体面发射激光器(PCSELs)具有大面积单模激射、任意光束整形与偏振调控、片上二维光束控制及波长易于拓展等多种突出功能,因此在实现光纤的两个低损耗传输窗口(1.31μm,1.55μm)更具优势。近年来,受凝聚态中拓扑相和拓扑相变概念的启发,基于拓扑能带论的拓扑光子学正在兴起,其中具有鲁棒性的拓扑腔面发射激光器(TCSELs)不仅拥有高光束质量的优点,而且可以产生携带轨道角动量(OAM)的涡旋光束。OAM复用技术可极大提高光通信系统的信道容量,是未来通信技术的重要发展方向。本论文基于光子晶体对光子态的调控,结合光子晶体微腔与光子晶体带边激射原理设计出了具有异质光子晶体腔结构,为实现高速PCSELs提供了可行性方案,同时将具有拓扑性质的光子晶体引入面发射激光器中并通过合理的优化设计,以达到高速、大功率、低阈值、窄线宽和提高边模抑制比的目的,具有潜在替代现有VCSELs的优势。主要研究内容和创新成果如下:1.对PCSELs的带边激射原理和阈值增益进行了理论分析,并结合半导体激光器速率方程推导出了PCSELs的光功率公式,同时分析了二维光子拓扑绝缘体的边界态与拓扑相变机理,为研制高速PCSELs与TCSELs提供了理论基础。2.开展了高速双晶格PCSELs的理论研究。设计了增强面内光反馈的PCSELs,其谐振腔是由两种具有不同光子带隙的光子晶体组成的面内异质结构,除了利用光子晶体带边的光反馈外,还利用了两种光子晶体边界的反射,并通过调控其中双晶格光子晶体的两个空气孔间距来提高反向传播光之间的一维耦合系数,从而实现对激射模式的强面内限制。通过三维时域有限差分法(3D-FDTD)证实了我们所提出的异质PCSELs可以在较小的正方形区域内实现1.3μm单模激射,并可能实现大于30 GHz的3d B调制带宽。3.开展了基于Dirac点高速PCSELs的理论研究。通过调控光子晶体参数得到双Dirac锥形色散,设计了增强Dirac点面内反馈的PCSELs,并且由于在Dirac点态密度可以降为零,而自发辐射耦合系数?与态密度成反比,因此利用Dirac点作为带边激射,可有效提高PCSELs调制速率,通过3D-FDTD证实其是以四极模激射,在基于少模的空分复用系统中可能具有潜在的应用。4.开展了基于能带反转光场限制效应的高速拓扑体态面发射激光器的理论研究。拓扑谐振腔是由拓扑态光子晶体(R2=1.05R0)外围完整拼接与其带隙相当的拓扑平庸态光子晶体(R1=0.94R0)构成,在拼接的边界处会产生光场的反射和限制效应,通过3D-FDTD证实其可在较小的正六边形区域内实现1.3μm低发散角单模激射。此外,该拓扑体态面发射激光器由于能带反转引起的反射只发生在靠近布里渊区中心附近的一个很小的波矢范围,因此限制了能够获得有效反馈的模式数目,这种模式选择机制与带边模式PCSELs完全不同,更有利于实现单模面发射,在高速光通信领域中的应用将更具有优势。5.开展了高速Dirac涡旋腔面发射激光器的理论研究。通过对正常蜂窝光子晶体超胞应用广义的Kekulé调制和收缩操作,然后将它们完整拼接得到异质Dirac涡旋腔(具有鲁棒的中间带隙模),同时适当调控腔中子晶格的尺寸,使得带间模收敛于Dirac点频率并处于外围光子晶体的禁带中,以达到增强带间模面内光反馈的目的,从而有利于实现高速调制。研究结果表明,以该异质Dirac涡旋腔的带间模作为带边激射,可在较小的区域内实现1.3μm单模矢量光束输出,这为发展具有优异性能的新型高速拓扑PCSELs提供了可能。

二、Recent Progress of Photonic Crystal Fibers(论文开题报告)

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

三、Recent Progress of Photonic Crystal Fibers(论文提纲范文)

(2)光纤参量放大器的最新进展(论文提纲范文)

1 引言
2 单抽运光纤参量放大器
3 双抽运光纤参量放大器
4 基于参量放大的波长转换
5 结束语

(3)光子晶体的研究新进展及应用(论文提纲范文)

1 引言
2 光子晶体
3 光子晶体发展现状
    3.1 光子晶体光纤
        3.1.1 PCF的导光机制与特性
        (1) 无截止单模特性。
        (2) 非线性。
        (3) 反常色散性。
        (4) 双折射性。
        3.1.2 光子晶体光纤最新研究成果
    3.2 光子晶体激光器
        3.2.1 紫外光子晶体激光器
        3.2.2 光子晶体多纳米腔激光器
        3.2.3 二维光子晶体薄板激光器
    3.3 光子晶体滤波器
        3.3.1 平板型光子晶体信道分出滤波器
        3.3.2 有机光子晶体滤波器
        3.3.3 铁磁性光子晶体多通道滤波器
    3.4 集成光路
4 展望

(6)40 GHz锁模皮秒激光信号源关键技术与应用研究(论文提纲范文)

致谢
摘要
ABSTRACT
缩写词索引
1 绪论
    1.1 研究背景
        1.1.1 光通信
        1.1.2 量子通信
        1.1.3 发展需求
    1.2 锁模脉冲信号源
        1.2.1 研究进展
        1.2.2 锁模技术概述
    1.3 全光时钟提取
    1.4 量子光通信信号源
        1.4.1 单光子信号源
        1.4.2 纠缠光子信号源
    1.5 面临的新问题
    1.6 本文的主要研究工作
2 理论基础
    2.1 锁模激光器理论
        2.1.1 被动锁模
        2.1.2 主动锁模
        2.1.3 有理数锁模
    2.2 脉冲光信号的测量与时钟提取原理
        2.2.1 脉冲形状的自相关测量
        2.2.2 信号抖动的互相关测量
        2.2.3 全光时钟提取
    2.3 量子光源的理论描述
        2.3.1 单光子源
        2.3.2 光量子纠缠源
    2.4 本章小节
3 被动锁模光纤环形激光器
    3.1 基于SOA非线性偏振旋转的被动锁模激光器
        3.1.1 实验系统与原理概述
        3.1.2 EDFA和 SOA的增益特性
        3.1.3 基频率锁模与脉冲波形
    3.2 被动锁模光纤激光器中的调Q脉冲和矩形脉冲
        3.2.1 实验系统简介
        3.2.2 调Q脉冲和矩形脉冲
        3.2.3 矩形脉冲的演化
    3.3 光纤激光器系统偏振态的控制与稳定
        3.3.1 高速稳偏器原理
        3.3.2 稳偏器三单元控制的必要性
        3.3.3 稳偏器的精度和响应时间
        3.3.4 稳偏器的应用效果
    3.4 本章小结
4 40 GHz主动锁模皮秒信号源的产生与全光时钟提取
    4.1 主动锁模光纤环形激光器
        4.1.1 实验系统与原理概述
        4.1.2 调制频率对锁模脉冲的影响与精确基频获取
        4.1.3 锁模皮秒激光信号源的测量
    4.2 高阶主动锁模皮秒激光信号源
        4.2.1 5-11 GHz有理数谐波锁模
        4.2.2 40 GHz量级主动锁模实验结果
    4.3 高速PRBS数据的全光时钟提取
        4.3.1 全光时钟提取实验系统
        4.3.2 12 GHz时钟提取实验结果
    4.4 本章小结
5 基于锁模皮秒激光源的量子光源制备
    5.1 单光子源的制备
        5.1.1 实验系统与原理概述
        5.1.2 弱脉冲中平均光子数的分布
        5.1.3 单光子源制备实验结果与分析
    5.2 纠缠态量子光源的制备
        5.2.1 纠缠态制备实验系统
        5.2.2 基于BBO晶体的倍频和参量下转换
        5.2.3 纠缠态的测量实验结果
    5.3 本章小结
6 总结与展望
    6.1 本文主要研究成果
    6.2 下一步拟进行的工作
参考文献
作者简历及攻读博士学位期间取得的研究成果
学位论文数据集

(8)基于荧光纳米材料的新型光纤传感器设计与应用研究(论文提纲范文)

致谢
摘要
Abstract
1 绪论
    1.1 研究背景和意义
    1.2 荧光纳米材料概述
    1.3 光纤传感器概述
    1.4 本论文的主要研究内容
    1.5 本论文的主要创新点
2 基于荧光纳米材料的光纤传感器
    2.1 引言
    2.2 基于荧光纳米材料的光纤器件架构及原理
        2.2.1 光纤类型和传感系统架构
        2.2.2 荧光纳米材料与光纤的作用机制
    2.3 基于荧光纳米材料的光纤器件制备工艺
    2.4 本章小结
3 基于量子点荧光纳米材料的微纳光纤传感器
    3.1 引言
    3.2 传感器原理及制备工艺
    3.3 传感器性能评估
        3.3.1 测试系统搭建及样品表征
        3.3.2 传感器性能测试
    3.4 本章小结
4 基于上转换纳米材料荧光增强的微纳光纤传感器
    4.1 引言
    4.2 传感器结构及工作原理
    4.3 传感器制备与性能分析
        4.3.1 传感器的制备流程
        4.3.2 传感器性能测试与分析
    4.4 本章小结
5 基于多量子点荧光纳米材料的多参量光纤传感器
    5.1 引言
    5.2 传感器结构设计
    5.3 传感器的结构计算与优化
        5.3.1 光子晶体光纤设计
        5.3.2 复合光纤光栅优化计算
    5.4 传感器的多参量感知原理
    5.5 本章小结
6 总结与展望
参考文献
作者简介
攻读博士学位期间发表的学术论文
攻读博士学位期间申请的专利

(9)基于光子晶体光纤的新型光纤激光器和传感器的研究(论文提纲范文)

摘要
ABSTRACT
主要缩略词对照表
1 绪论
    1.1 光子晶体光纤概述
    1.2 基于光子晶体光纤的滤波器
        1.2.1 基于保偏光子晶体光纤的Sagnac环
        1.2.2 基于PCF的在纤式模式干涉仪
        1.2.3 基于PCF的法布里珀罗干涉仪
        1.2.4 基于多芯光子晶体光纤的滤波器
    1.3 基于PCF滤波器的多波长光纤激光器
        1.3.1 可切换多波长光纤激光器
        1.3.2 可调谐多波长光纤激光器
    1.4 基于PCF滤波器的光纤传感器
        1.4.1 PCF传感器用于结构健康监测
        1.4.2 敏感膜功能化的生物医学光纤传感器
    1.5 本文主要的研究内容
2 基于多芯光子晶体光纤滤波器的可调谐多波长激光器
    2.1 引言
    2.2 多芯光纤的耦合模理论
        2.2.1 双芯耦合模方程的推导
        2.2.2 多芯耦合理论
    2.3 DCPCF滤波器
        2.3.1 DCPCF模式及耦合特性
        2.3.2 基于DCPCF耦合型滤波器
        2.3.3 实验结果及关键技术
    2.4 基于DCPCF-MZI复合滤波器的可调谐双波长激光器
        2.4.1 MZI滤波器的原理
        2.4.2 复合滤波器的传输特性
        2.4.3 基于DCPCF-MZI滤波器的激光器的结构及原理
        2.4.4 激光输出特性分析
    2.5 TCPCF滤波器
        2.5.1 TCPCF模式特性分析
        2.5.2 基于TCPCF的耦合型滤波器
    2.6 基于锥形TCPCF滤波器的可调谐多波长激光器
        2.6.1 锥形TCPCF滤波器的耦合特性
        2.6.2 锥形TCPCF滤波器的制作及传输特性
        2.6.3 基于锥形TCPCF滤波器的激光器结构
        2.6.4 影响激光可调谐特性的参数分析
        2.6.5 多波长可调谐激光输出及稳定性测试
    2.7 小结
3 基于光子晶体光纤滤波器的可切换多波长激光器
    3.1 引言
    3.2 基于PMPCF-SI滤波器的多波长激光器及输出稳定性研究
        3.2.1 PMPCF的双折射特性分析
        3.2.2 基于PMPCF的 Sagnac干涉仪理论
        3.2.3 PMPCF-SI滤波器制作及传输特性分析
        3.2.4 多波长激光器的结构及输出特性分析
        3.2.5 PMPCF对输出激光稳定性的影响
    3.3 基于四叶草PCF模式干涉型滤波器的多波长激光器
        3.3.1 FLCPCF的模式特性分析
        3.3.2 FLCPCF滤波器的原理及制作
        3.3.3 滤波器传输谱特性分析
        3.3.4 激光器结构及输出分析
        3.3.5 激光器可调谐特性分析
    3.4 小结
4 基于多芯光子晶体光纤的传感技术
    4.1 引言
    4.2 基于双锥形DCPCF的多参量传感器
        4.2.1 传感器结构及传感机制
        4.2.2 传感器制备及传输谱分析
        4.2.3 矢量曲率传感特性
        4.2.4 拉力传感特性
        4.2.5 温度传感特性
        4.2.6 传感器性能优化
    4.3 基于TCPCF的拉力传感器
        4.3.1 拉力传感机制
        4.3.2 拉力灵敏度的理论计算
        4.3.3 传感器制作及传输谱测量
        4.3.4 拉力传感测试及结果
        4.3.5 传感器性能分析
        4.3.6 灵敏度优化
    4.4 小结
5 敏感膜功能化的生物医学光纤传感器
    5.1 引言
    5.2 基于倏逝波的光纤传感理论
        5.2.1 直线形EW光纤传感机制
        5.2.2 U形光纤的EW传感理论
    5.3 TPPS染料功能化的FLCPCF氨气传感器
        5.3.1 FLCPCF的特性分析
        5.3.2 TPPS染料膜的吸收特性
        5.3.3 FLCPCF传感器的制备
        5.3.4 传感器的实验测试系统与传输特性
        5.3.5 传感性能分析
    5.4 无染料薄膜功能化的U形光纤PH传感器
        5.4.1 U形光纤的特性分析及制作
        5.4.2 EC/Sol-gel敏感膜的原理及制备
        5.4.3 敏感膜的特性分析
        5.4.4 传感器的制备及传输特性
        5.4.5 传感器的性能分析
        5.4.6 传感器应用前景的讨论分析
    5.5 小结
6 结束语
    6.1 本论文的研究成果总结
    6.2 下一步拟开展的工作
参考文献
作者简历及攻读博士学位期间取得的研究成果
学位论文数据集

(10)1.3μm高速光子晶体面发射激光器与拓扑面发射激光器研究(论文提纲范文)

摘要
Abstract
第一章 绪论
    1.1 研究背景与意义
    1.2 高速半导体激光器及其研究状况概述
        1.2.1 高速垂直腔面发射激光器(VCSELs)概述
        1.2.2 高速分布反馈(DFB)激光器概述
        1.2.3 高速量子级联激光器(QCLs)概述
        1.2.4 高速光子晶体激光器(PCLs)概述
        1.2.5 高速半导体激光器的瓶颈及发展趋势
    1.3 光子晶体面发射激光器(PCSELs)研究进展
        1.3.1 大面积相干1.3μm PCSELs
        1.3.2 PCSELs的光束模式控制
        1.3.3 PCSELs的光束控制
        1.3.4 高亮度PCSELs
    1.4 拓扑光子学
        1.4.1 从拓扑电子学到拓扑光子学
        1.4.2 拓扑光子晶体激光器研究进展
    1.5 涡旋光束
        1.5.1 涡旋光束的发展历程
        1.5.2 涡旋光束光通信原理及优势
        1.5.3 OAM模式的复用与解复用
        1.5.4 OAM编码通信技术
        1.5.5 拓扑涡旋激光器研究进展
    1.6 本论文选题依据及主要研究内容
第二章 高速光子晶体面发射激光器的理论基础
    2.1 半导体激光器速率方程理论
        2.1.1 量子阱激光器速率方程模型
        2.1.2 量子级联激光器速率方程模型
        2.1.3 量子点激光器速率方程模型
    2.2 半导体激光器的直接调制原理
    2.3 光子晶体面发射激光器(PCSELs)的理论基础
        2.3.1 PCSELs带边激射原理
        2.3.2 PCSELs阈值增益
        2.3.3 PCSELs输出光功率
        2.3.4 PCSELs输出光功率的提高方法
        2.3.5 PCSELs三维耦合波理论
    2.4 Purcell因子和自发辐射因子
    2.5 本章小结
第三章 拓扑光子学基础
    3.1 拓扑绝缘体与Dirac方程
        3.1.1 Dirac方程和束缚态的解
        3.1.2 修正的Dirac方程与Z2 拓扑不变量
        3.1.3 拓扑不变量与量子相变
        3.1.4 拓扑保护的边界态解
    3.2 拓扑物理中的经典模型
        3.2.1 Su-Schrieffer-Hegger(SSH)模型
        3.2.2 Haldane模型
        3.2.3 Bernevig-Hughes-Zhang(BHZ)模型
    3.3 光子Dirac锥及其相关物理
        3.3.1 光子晶体中的Dirac锥
        3.3.2 Dirac 光局域模
    3.4 二维光子拓扑绝缘体
        3.4.1 光子拓扑绝缘体中的拓扑不变量
        3.4.2 赝时间反转对称性与赝自旋
        3.4.3 二维拓扑保护边缘态
        3.4.4 拓扑光子晶体的k·P模型
        3.4.5 拓扑光子相变机理
    3.5 本章小结
第四章 1.3μm 高速光子晶体面发射激光器研究
    4.1 双晶格光子晶体谐振腔
        4.1.1 双晶格光子晶体谐振腔的概念
        4.1.2 双晶格光子晶体谐振腔晶格间距的调谐
    4.2 1.3μm高速双晶格光子晶体面发射激光器设计
        4.2.1 异质PCSELs的结构设计
        4.2.2 理论分析
        4.2.3 结论
    4.3 基于Dirac点 1.3μm高速光子晶体面发射激光器的设计
        4.3.1 研究背景
        4.3.2 理论基础
        4.3.3 器件设计
        4.3.4 仿真结果
    4.4 本章小结
第五章 1.3μm 高速拓扑体态面发射激光器研究
    5.1 高速拓扑体态面发射激光器的设计
        5.1.1 二维拓扑光子晶体谐振腔的设计
        5.1.2 仿真结果
    5.2 理论分析
        5.2.1 蜂窝光子晶体的紧束缚模型
        5.2.2 基于赝自旋能带反转分析
        5.2.3 拓扑谐振腔支持的腔模
    5.3 本章小结
第六章 1.3μm 高速 Dirac 涡旋腔面发射激光器研究
    6.1 矢量光束的理论基础
    6.2 Dirac涡旋腔
        6.2.1 对DFB激光器和VCSELs的拓扑理解
        6.2.2 Jackiw-Rossi零模
        6.2.3 Dirac涡旋腔的参数
        6.2.4 Dirac涡旋腔的性质
    6.3 1.3μm 高速 Dirac 涡旋腔面发射激光器的设计
        6.3.1 异质 Dirac 涡旋腔的设计
        6.3.2 仿真结果
    6.4 本章小结
第七章 总结与展望
    7.1 本论文主要完成工作
    7.2 展望
参考文献
致谢
作者简历及攻读学位期间发表的学术论文与研究成果

四、Recent Progress of Photonic Crystal Fibers(论文参考文献)

  • [1]光子晶体光纤及其技术进展[A]. 陈伟,李进延,李诗愈,雷道玉,戴能利,陆培祥. 全国第十三次光纤通信暨第十四届集成光学学术会议论文集, 2007
  • [2]光纤参量放大器的最新进展[J]. 陈婉,董淑福,赵宇波,刘红军,周俊. 激光与光电子学进展, 2007(10)
  • [3]光子晶体的研究新进展及应用[J]. 邹丽娜,郑咏梅,施宏艳,申铉国. 半导体光电, 2006(03)
  • [4]光子晶体光纤研制的最新进展[A]. 唐仁杰. 全国第十二次光纤通信暨第十三届集成光学学术会议论文集, 2005
  • [5]面向下一代网络的光纤光缆和通信电缆技术探讨[A]. 李元鹏. 中国通信学会2004年光缆电缆学术年会论文集, 2004
  • [6]40 GHz锁模皮秒激光信号源关键技术与应用研究[D]. 王海洋. 北京交通大学, 2021(02)
  • [7]基于微流控的光子晶体光纤传感特性研究[D]. 徐侃迪. 南京邮电大学, 2021
  • [8]基于荧光纳米材料的新型光纤传感器设计与应用研究[D]. 胡思琪. 浙江大学, 2021(01)
  • [9]基于光子晶体光纤的新型光纤激光器和传感器的研究[D]. 唐子娟. 北京交通大学, 2021
  • [10]1.3μm高速光子晶体面发射激光器与拓扑面发射激光器研究[D]. 李儒颂. 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2021(08)

标签:;  ;  ;  ;  ;  

光子晶体光纤的最新进展
下载Doc文档

猜你喜欢