范聪:施氏矿物还原-重结晶过程中重金属的再分配机制研究论文

范聪:施氏矿物还原-重结晶过程中重金属的再分配机制研究论文

本文主要研究内容

作者范聪(2019)在《施氏矿物还原-重结晶过程中重金属的再分配机制研究》一文中研究指出:酸性矿山废水(acid mine drainage,AMD)的极端环境与离子丰度(富含Fe3+、SO42-、(类)重金属)造就了特殊的铁羟基硫酸盐矿物——施氏矿物的形成。施氏矿物能够通过吸附或共沉淀固定水体和沉积物中的重金属,降低其迁移性与生物可利用性。然而,AMD富铁环境中Fe(Ⅱ)/Fe(Ⅲ)循环能够诱导亚稳态施氏矿物向更稳定的晶相转化,导致原先赋存的重金属发生再分配。以往研究多关注重金属负载对施氏矿物形貌与稳定性的影响,但对施氏矿物还原-重结晶过程耦合变价重金属环境行为的研究较少。厘清AMD环境中典型重金属在施氏矿物晶相转化过程中的再分配行为,可为降低AMD流域重金属二次污染提供理论支撑。为此,本研究以施氏矿物为对象,探究亚铁诱导还原-重结晶过程中重金属的再分配机制。制备负载不同重金属(包括稳定价态的镉(Cd(Ⅱ)),氧化还原活跃的铬(Cr(VI))、砷(As(V))、锰(Mn(Ⅱ))、钴(Co(Ⅱ)))的施氏矿物,结合离子色谱(IC)、X-射线粉末衍射(XRD)、傅里叶红外光谱(FTIR)、扫描电镜(SEM)、X-射线光电子能谱(XPS)、穆斯堡尔谱以及X射线精细结构光谱(XAFS)等手段对反应过程中溶液理化因子变化、晶相转化产物组成、次生矿物上重金属价态、重金属局域配位环境等进行了分析;表明在近中性偏酸条件下(pH 6.5),亚铁诱导施氏矿物还原-重结晶的主导转化路径为“施氏矿物→纤铁矿→针铁矿”;负载的阳离子重金属(Cd、Mn、Co)的再分配表现为先解吸再固定在转化产物上,而含氧阴离子Cr、As则几乎没有发生迁移。主要结论如下:(1)探究了稳定价态镉在施氏矿物上的赋存行为及还原-重结晶过程中的再分配机制。在负载Cd阶段,施氏矿物与Cd的主导结合方式为表面羟基吸附。DLM模型显示Cd主要以≡Fe(1)OCd+和≡Fe(2)OCd+两种单齿络合物形式存在于施氏矿物表面。Fe(Ⅱ)诱导吸附Cd的施氏矿物还原-重结晶阶段,收缩核模型拟合结果显示外源亚铁(1 mM)通过将重结晶的速率控制步骤由表面反应控制(无Fe(Ⅱ))转化为内扩散控制,从而显著提升施氏矿物的溶解速率。晶相转化速率随Cd浓度增加而降低,同时过渡产物纤铁矿的积累量随之增多,转化产物为针铁矿和纤铁矿的混合物。推断吸附Cd的施氏矿物晶相转化路径为:施氏矿物→纤铁矿→针铁矿。Cd在施氏矿物表面的吸附阻塞了亚铁的进攻,是抑制二次成矿的主要原因。同时,Cd的再分配行为随施氏矿物溶解速率的加快而趋于明显。矿物快速溶解过程中(Fe(Ⅱ)1mM),负载的Cd先显著释放而后再次被次生矿物再次固定。最终Cd主要以内层络合形式与次生矿物的羟基结合。(2)阐明了施氏矿物还原-重结晶过程耦合氧化还原活跃态铬和砷的再分配行为。在负载阶段,超过99%的AsO43-和81%的CrO42-被施氏矿物固定;CrO42-的吸附机制以SO42-交换为主,AsO43-的吸附机制同时涉及表面羟基络合和SO42-交换,但CrO42-置换SO42-的能力更强。CrO42-、AsO43-均能抑制施氏矿物的还原-重结晶过程,原因是CrO42-、AsO43-在负载过程中替代了SO42-与Fe(Ⅲ)以更强吸引力结合,提高了施氏矿物的结构稳定性。反应30 d后,CrO42--施氏矿物仍是唯一存在的矿物相,这是由于Cr(VI)和催化剂Fe(Ⅱ)的相互消耗以及Cr(Ⅲ)-Fe(Ⅲ)氢氧化物的覆盖(阻碍了Fe(Ⅱ)的攻击)共同抑制了晶相转化。而4 mM Fe(Ⅱ)条件下,AsO43--施氏矿物经由纤铁矿转化为结晶度较差的针铁矿。反应过程中吸附态Cr和As几乎没有重新释放,Cr(VI)被还原为Cr(Ⅲ);As(V)未被还原,同时As没有向液相发生迁移而是在主体矿物相上进行了再分配。(3)揭示了施氏矿物还原-重结晶过程中亚稳态锰、钴的稳定性与再分配机制。在负载阶段,Mn(Ⅱ)和Co(Ⅱ)没有发生价态变化。由于表面络合常数logKCo>logKMn,使得Co(Ⅱ)在施氏矿物表面的吸附量大于Mn(Ⅱ),同时对晶相转化的抑制效应也更强;相应地,Co在相转化过程中的迁移性较弱。Mn(Ⅱ)、Co(Ⅱ)与Fe(Ⅱ)在施氏矿物表面产生竞争性吸附,使Fe(Ⅱ)吸附量降低;同时Mn(Ⅱ)/Co(Ⅱ)羟基络合物的覆盖削弱了Fe(Ⅱ)/Fe(Ⅲ)之间的电子传递,共同导致了晶相转化速率降低。此外,Mn(Ⅱ)、Co(Ⅱ)的存在导致了不同的晶相转化路径,Mn(Ⅱ)-施氏矿物经由纤铁矿再转化为针铁矿;Co(Ⅱ)-施氏矿物则直接转化为针铁矿。Mn和Co的迁移行为主要与晶相转化程度有关,Fe(Ⅱ)诱导下矿物快速溶解促进了Mn、Co的重新释放,次生矿物的形成则有助于再次固定Mn和Co。X射线吸收近边结构谱(XANES)显示反应过程中,Mn(Ⅱ)、Co(Ⅱ)分别被氧化为Mn(Ⅲ)和Co(Ⅲ)。Mn、Co K边EXAFS谱拟合结果表明,30 d中Mn和Co的原子周边环境发生变化,最终Mn和Co主要以单齿单核和共边双齿双核的方式与新矿物相结合。

Abstract

suan xing kuang shan fei shui (acid mine drainage,AMD)de ji duan huan jing yu li zi feng du (fu han Fe3+、SO42-、(lei )chong jin shu )zao jiu le te shu de tie qiang ji liu suan yan kuang wu ——shi shi kuang wu de xing cheng 。shi shi kuang wu neng gou tong guo xi fu huo gong chen dian gu ding shui ti he chen ji wu zhong de chong jin shu ,jiang di ji qian yi xing yu sheng wu ke li yong xing 。ran er ,AMDfu tie huan jing zhong Fe(Ⅱ)/Fe(Ⅲ)xun huan neng gou you dao ya wen tai shi shi kuang wu xiang geng wen ding de jing xiang zhuai hua ,dao zhi yuan xian fu cun de chong jin shu fa sheng zai fen pei 。yi wang yan jiu duo guan zhu chong jin shu fu zai dui shi shi kuang wu xing mao yu wen ding xing de ying xiang ,dan dui shi shi kuang wu hai yuan -chong jie jing guo cheng ou ge bian jia chong jin shu huan jing hang wei de yan jiu jiao shao 。li qing AMDhuan jing zhong dian xing chong jin shu zai shi shi kuang wu jing xiang zhuai hua guo cheng zhong de zai fen pei hang wei ,ke wei jiang di AMDliu yu chong jin shu er ci wu ran di gong li lun zhi cheng 。wei ci ,ben yan jiu yi shi shi kuang wu wei dui xiang ,tan jiu ya tie you dao hai yuan -chong jie jing guo cheng zhong chong jin shu de zai fen pei ji zhi 。zhi bei fu zai bu tong chong jin shu (bao gua wen ding jia tai de ge (Cd(Ⅱ)),yang hua hai yuan huo yue de ge (Cr(VI))、shen (As(V))、meng (Mn(Ⅱ))、gu (Co(Ⅱ)))de shi shi kuang wu ,jie ge li zi se pu (IC)、X-she xian fen mo yan she (XRD)、fu li xie gong wai guang pu (FTIR)、sao miao dian jing (SEM)、X-she xian guang dian zi neng pu (XPS)、mu si bao er pu yi ji Xshe xian jing xi jie gou guang pu (XAFS)deng shou duan dui fan ying guo cheng zhong rong ye li hua yin zi bian hua 、jing xiang zhuai hua chan wu zu cheng 、ci sheng kuang wu shang chong jin shu jia tai 、chong jin shu ju yu pei wei huan jing deng jin hang le fen xi ;biao ming zai jin zhong xing pian suan tiao jian xia (pH 6.5),ya tie you dao shi shi kuang wu hai yuan -chong jie jing de zhu dao zhuai hua lu jing wei “shi shi kuang wu →qian tie kuang →zhen tie kuang ”;fu zai de yang li zi chong jin shu (Cd、Mn、Co)de zai fen pei biao xian wei xian jie xi zai gu ding zai zhuai hua chan wu shang ,er han yang yin li zi Cr、Asze ji hu mei you fa sheng qian yi 。zhu yao jie lun ru xia :(1)tan jiu le wen ding jia tai ge zai shi shi kuang wu shang de fu cun hang wei ji hai yuan -chong jie jing guo cheng zhong de zai fen pei ji zhi 。zai fu zai Cdjie duan ,shi shi kuang wu yu Cdde zhu dao jie ge fang shi wei biao mian qiang ji xi fu 。DLMmo xing xian shi Cdzhu yao yi ≡Fe(1)OCd+he ≡Fe(2)OCd+liang chong chan chi lao ge wu xing shi cun zai yu shi shi kuang wu biao mian 。Fe(Ⅱ)you dao xi fu Cdde shi shi kuang wu hai yuan -chong jie jing jie duan ,shou su he mo xing ni ge jie guo xian shi wai yuan ya tie (1 mM)tong guo jiang chong jie jing de su lv kong zhi bu zhou you biao mian fan ying kong zhi (mo Fe(Ⅱ))zhuai hua wei nei kuo san kong zhi ,cong er xian zhe di sheng shi shi kuang wu de rong jie su lv 。jing xiang zhuai hua su lv sui Cdnong du zeng jia er jiang di ,tong shi guo du chan wu qian tie kuang de ji lei liang sui zhi zeng duo ,zhuai hua chan wu wei zhen tie kuang he qian tie kuang de hun ge wu 。tui duan xi fu Cdde shi shi kuang wu jing xiang zhuai hua lu jing wei :shi shi kuang wu →qian tie kuang →zhen tie kuang 。Cdzai shi shi kuang wu biao mian de xi fu zu sai le ya tie de jin gong ,shi yi zhi er ci cheng kuang de zhu yao yuan yin 。tong shi ,Cdde zai fen pei hang wei sui shi shi kuang wu rong jie su lv de jia kuai er qu yu ming xian 。kuang wu kuai su rong jie guo cheng zhong (Fe(Ⅱ)1mM),fu zai de Cdxian xian zhe shi fang er hou zai ci bei ci sheng kuang wu zai ci gu ding 。zui zhong Cdzhu yao yi nei ceng lao ge xing shi yu ci sheng kuang wu de qiang ji jie ge 。(2)chan ming le shi shi kuang wu hai yuan -chong jie jing guo cheng ou ge yang hua hai yuan huo yue tai ge he shen de zai fen pei hang wei 。zai fu zai jie duan ,chao guo 99%de AsO43-he 81%de CrO42-bei shi shi kuang wu gu ding ;CrO42-de xi fu ji zhi yi SO42-jiao huan wei zhu ,AsO43-de xi fu ji zhi tong shi she ji biao mian qiang ji lao ge he SO42-jiao huan ,dan CrO42-zhi huan SO42-de neng li geng jiang 。CrO42-、AsO43-jun neng yi zhi shi shi kuang wu de hai yuan -chong jie jing guo cheng ,yuan yin shi CrO42-、AsO43-zai fu zai guo cheng zhong ti dai le SO42-yu Fe(Ⅲ)yi geng jiang xi yin li jie ge ,di gao le shi shi kuang wu de jie gou wen ding xing 。fan ying 30 dhou ,CrO42--shi shi kuang wu reng shi wei yi cun zai de kuang wu xiang ,zhe shi you yu Cr(VI)he cui hua ji Fe(Ⅱ)de xiang hu xiao hao yi ji Cr(Ⅲ)-Fe(Ⅲ)qing yang hua wu de fu gai (zu ai le Fe(Ⅱ)de gong ji )gong tong yi zhi le jing xiang zhuai hua 。er 4 mM Fe(Ⅱ)tiao jian xia ,AsO43--shi shi kuang wu jing you qian tie kuang zhuai hua wei jie jing du jiao cha de zhen tie kuang 。fan ying guo cheng zhong xi fu tai Crhe Asji hu mei you chong xin shi fang ,Cr(VI)bei hai yuan wei Cr(Ⅲ);As(V)wei bei hai yuan ,tong shi Asmei you xiang ye xiang fa sheng qian yi er shi zai zhu ti kuang wu xiang shang jin hang le zai fen pei 。(3)jie shi le shi shi kuang wu hai yuan -chong jie jing guo cheng zhong ya wen tai meng 、gu de wen ding xing yu zai fen pei ji zhi 。zai fu zai jie duan ,Mn(Ⅱ)he Co(Ⅱ)mei you fa sheng jia tai bian hua 。you yu biao mian lao ge chang shu logKCo>logKMn,shi de Co(Ⅱ)zai shi shi kuang wu biao mian de xi fu liang da yu Mn(Ⅱ),tong shi dui jing xiang zhuai hua de yi zhi xiao ying ye geng jiang ;xiang ying de ,Cozai xiang zhuai hua guo cheng zhong de qian yi xing jiao ruo 。Mn(Ⅱ)、Co(Ⅱ)yu Fe(Ⅱ)zai shi shi kuang wu biao mian chan sheng jing zheng xing xi fu ,shi Fe(Ⅱ)xi fu liang jiang di ;tong shi Mn(Ⅱ)/Co(Ⅱ)qiang ji lao ge wu de fu gai xiao ruo le Fe(Ⅱ)/Fe(Ⅲ)zhi jian de dian zi chuan di ,gong tong dao zhi le jing xiang zhuai hua su lv jiang di 。ci wai ,Mn(Ⅱ)、Co(Ⅱ)de cun zai dao zhi le bu tong de jing xiang zhuai hua lu jing ,Mn(Ⅱ)-shi shi kuang wu jing you qian tie kuang zai zhuai hua wei zhen tie kuang ;Co(Ⅱ)-shi shi kuang wu ze zhi jie zhuai hua wei zhen tie kuang 。Mnhe Code qian yi hang wei zhu yao yu jing xiang zhuai hua cheng du you guan ,Fe(Ⅱ)you dao xia kuang wu kuai su rong jie cu jin le Mn、Code chong xin shi fang ,ci sheng kuang wu de xing cheng ze you zhu yu zai ci gu ding Mnhe Co。Xshe xian xi shou jin bian jie gou pu (XANES)xian shi fan ying guo cheng zhong ,Mn(Ⅱ)、Co(Ⅱ)fen bie bei yang hua wei Mn(Ⅲ)he Co(Ⅲ)。Mn、Co Kbian EXAFSpu ni ge jie guo biao ming ,30 dzhong Mnhe Code yuan zi zhou bian huan jing fa sheng bian hua ,zui zhong Mnhe Cozhu yao yi chan chi chan he he gong bian shuang chi shuang he de fang shi yu xin kuang wu xiang jie ge 。

论文参考文献

  • [1].重金属在土壤—蔬菜系统中的迁移转运与调控及其健康风险评估[D]. 刘丽.中南林业科技大学2018
  • [2].锌胁迫下不同植物及品种根际效应及锌积累机理研究[D]. 徐卫红.武汉大学2005
  • [3].大蒜重金属抗性基因的克隆及其功能分析[D]. 张海燕.中国科学院研究生院(植物研究所)2005
  • [4].铅镍富集植物的筛选及其根际微生态特征[D]. 陆引罡.西南大学2006
  • [5].植物修复重金属—有机物复合污染河道疏浚底泥的研究[D]. 马伟芳.天津大学2006
  • [6].黄河包头段沉积物重金属吸附机制及污染生态学研究[D]. 薛红喜.内蒙古大学2007
  • [7].重庆市土壤—作物系统重金属特征研究[D]. 李其林.西南大学2008
  • [8].超积累植物东南景天根系对重金属的吸收积累及根际细菌群落特征[D]. 侯丹迪.浙江大学2017
  • [9].沉积物微生物燃料电池强化水体中污染物去除效能及机制[D]. 徐勋.哈尔滨工业大学2017
  • 论文详细介绍

    论文作者分别是来自华南理工大学的范聪,发表于刊物华南理工大学2019-10-23论文,是一篇关于酸性矿山废水论文,施氏矿物论文,还原重结晶论文,重金属论文,再分配论文,华南理工大学2019-10-23论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自华南理工大学2019-10-23论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。

    标签:;  ;  ;  ;  ;  ;  

    范聪:施氏矿物还原-重结晶过程中重金属的再分配机制研究论文
    下载Doc文档

    猜你喜欢