一、2003年广西最大一次锋面暴雨天气过程特征分析(论文文献综述)
刘国忠,周云霞,覃月凤,翟舒楠,梁嘉颖,黄明策[1](2021)在《2020年广西暴雨灾害天气综述与分析》文中指出利用气象及其灾情等资料,对2020年广西区域性暴雨灾害天气过程进行综合分析,并与历史同期的气候作比较,在此基础上对其进行综述。结果表明:(1)年初至春季出现冬春暴雨,比常年偏早、偏强。(2)前汛期5月底到6月上旬出现了破历史记录的暴雨灾害,具有时间长、雨量大、强降雨叠加及灾害重等特点。(3)6月底出现站点破历史记录的全区性暴雨。(4)后汛期影响台风个数偏少,受"海高斯"影响出现全区性暴雨。(5)全年区域性以上暴雨场数比常年少。通过对2020年广西暴雨灾害的综述分析,加深对广西暴雨灾害整体性认识,对今后做好预报业务提供有益参考。
林开平,陈伟斌,刘国忠,覃月凤,董雪晗,熊思章[2](2020)在《广西暴雨业务预报技术回顾与展望》文中研究指明回顾了广西暴雨业务预报技术60年发展历程,总结了近30年气象工作者对广西暴雨研究与暴雨预报技术取得的主要成果。广西暴雨研究进展主要是从广西暴雨天气机理研究、广西几种主要暴雨类型统计分析等方面进行综述。暴雨预报技术着重对多源资料的应用、数值预报产品的释用、集合预报技术的应用、人工智能的应用等客观预报技术在广西暴雨预报的应用方面进行归纳。
冯文[3](2020)在《热带扰动和弱冷空气引发的海南岛秋汛期特大暴雨时空分布特征及形成机制研究》文中研究说明由热带扰动和弱冷空气引发的秋汛期特大暴雨是造成海南岛大范围洪涝的主要灾害性天气之一。2000年、2008年和2010年10月份海南岛东半部的三次重大洪涝灾害就是由该类暴雨引发的。为了系统研究此类暴雨形成、加强和维持的机制,增进对热带地区暴雨的认识,本文利用海南省高空、地面观测资料、卫星、多普勒雷达以及NCEP、ECMWF ERA5再分析资料,统计分析了热带扰动和弱冷空气引发的海南岛秋汛期特大暴雨的时空分布特征,深入探讨了暴雨过程中多尺度天气系统的相互作用,深对流触发、发展和维持的机制,以及中尺度系统的动力、热力学特征,得到以下主要结论:(1)从气候统计上发现,海南岛降水随时间变化分布形态与越南中北部地区较为相似,但与华南其他各区存在较大差异,双峰结构不明显,随着暴雨级别的提高,单峰现象愈加显着。全年降水峰值出现在秋汛期内,且近50%的大范围极端降水事件都出现在秋汛期,其中由热带扰动和弱冷空气引发的秋汛期特大暴雨日占全年总数高达58%。秋汛期特大暴雨降水强度地理分布非常有规律性,整体呈一致的东多西少的态势。40年平均风场分析发现低空偏东强风带在南海北部的出现和逐候加强是秋汛期内最显着的环流特征,其形成的机制是秋季南北海陆热力差异增大导致海陆之间相对涡通量的增大,于南海中北部对流层低层诱导出强的辐合风速,形成带状偏东风急流。(2)从多个个例的合成场上发现,南亚高压、中纬西风槽、副热带高压和南海热带扰动的相互作用,是秋汛期特大暴雨形成的主要环流背景。暴雨发生期间,北半球亚洲区内ITCZ异常活跃,南海季风槽和印度季风槽南撤速度缓慢,比常年平均异常偏北偏强。南亚高压的位置比常年同期明显偏东偏南,东亚中纬槽,副热带高压的强度也比常年明显偏强。造成暴雨增幅的水汽主要来自印度洋的西南季风支流,副高南侧的偏东气流和大陆冷高压东南侧的东北气流。(3)从不同强度个例的对比分析发现,热带扰动和弱冷空气引发的秋汛期特大暴雨个例天气系统配置均具有非常相似的特征:对流层上层,南亚高压正好位于南海北部上空,高层存在稳定的辐散区;对流层中、低层,热带扰动、中纬槽后冷高压和副高三者之间的相互作用,使得南海北部地区南北向和东北-西南向梯度加大,海南岛上空锋区结构建立,涡旋增强和维持,同时诱发偏东低空急流。海南岛正处这支偏东低空急流的出口区左侧,风向风速辐合明显。强的秋汛期暴雨降水个例的急流核强度、长度、厚度,以及急流上方的风速梯度远大于弱个例。最强降水日中强个例的低空急流核正好位于海南岛东部近海上空,在水平方向上稳定少动,垂直方向和风速上则脉动剧烈,有利于强降水激发。弱个例的急流核在水平方向上东西振荡明显,在垂直高度和风速上变化很小,不利于强降水在固定区域的维持。(4)从个例的模拟分析中发现,湿中性层结、非绝热加热和水平运动导致的锋生以及不同高度的垂直风切变对深对流的形成、发展和维持至关重要。中性层结的形成是弱冷锋后的稳定层结区向热带扰动外围偏南风所带来暖湿气团的不稳定层结区过渡带来的垂直层结变化的结果。暴雨过程中非绝热加热项和水平运动项在局地锋生的过程中贡献最大。低层和中层风切变影响下的回波结构变化和移动方向、速度有助于解释回波“列车效应”的形成机制。通过对惯性重力内波方程组的线性和非线性求解,发现热带扰动和弱冷空气引发的秋汛期特大暴雨个例中中尺度涡旋生成和加强,与水平风切变、积云对流潜热释放、垂直风切变或低空急流以及冷空气有关。其中强盛的对流凝结潜热加热对热带中尺度涡旋垂直运动振幅的增强起主要作用,有利涡旋的发展和维持。(5)地形敏感试验结果表明,海南岛地形高度的变化对东部暴雨量级有显着影响。由于地形存在,迎风坡前强烈抬升的气流凝结形成降水导致大量凝结潜热释放,潜热释放又反馈增强对流区暖心结构,进而加强其垂直运动,对对流形成正反馈效应,这也是海南岛东部出现强降水的重要原因。
盛杰[4](2020)在《华北地区线状对流的活动特征与机理研究》文中提出6-8月是华北地区的主汛期,受西风带和副热带高压共同影响,大陆性和海洋性季风气流在此交汇,境内既有离渤海较近的华北大平原,也有吕梁山、太行山、燕山等众多山脉,对流天气复杂多变,预报员难以把握。线状对流系统(quasi-linear convective systems,QLCSs)是汛期影响华北地区重要的强对流系统,其尺度大,致灾天气强,一直缺乏较完整的系统性统计研究,同时地形对华北QLCSs作用机理的研究成果也较少。为建立完整的华北地区QLCSs个例库,首先发展了一套线状对流系统客观识别方法。将计算机图形学骨架概念应用到气象学领域,发展了回波图像预处理、骨架修剪处理以及长宽比量化处理技术,该方法能自动识别出雷达回波拼图中符合气象学标准的QLCSs。结合2016年黄淮地区一次双QLCSs过程给出了基于骨架的QLCSs客观量化算法的具体技术流程,然后利用该方法对2016年6月安徽地区的QLCSs进行客观筛选,并进一步量化识别QLCSs的移动特征,结合灾害天气实况与主观识别进行对比评估,结果表明:结合气象学标准改造的骨架图像识别算法,较好保留了气象回波形状信息,在准确量化对流系统长短轴的基础上,实现线状对流系统的有效识别。利用雷达拼图资料,应用骨架图像识别算法建立2013-2018年华北地区QLCSs个例库(171例),根据其时空分布特征的统计结果得到如下结论:华北QLCSs时空分布不均匀,除有明显的年及月变化外,其生消日变化特征也较显着,总体表现出易于午后生成,夜间减弱消亡的特征。空间分布上来看,高原发生较少,沿山及平原地区多有出现,太行山附近是其重要的高频生成区,说明热力条件的日变化及地形对于华北QLCSs的发生、发展有重要影响。针对暴雨和雷暴大风两类不同的对流天气,可筛选出雷暴大风为主的QLCSs和暴雨为主的QLCSs,统计发现两者活动规律各具特点,暴雨型QLCSs移速慢、夹角小,形成于夜间的山地或沿山附近,雷暴大风型QLCSs移速快、夹角大,下午时段在平原地区或沿山生成。按照气象灾害预警信号标准,进一步筛选出产生极端强雷暴大风和极端强降水两类致灾性QLCSs,给出这两类QLCSs的环流形势、环境条件、地形作用和关键中尺度系统地面冷池等的特征,分析结果如下:强雷暴大风型QLCSs的环境大气斜压性强,中层干和大的垂直减温率造成的BCAPE(best convective available potential energy)、DCAPE(downdraft convective available potential Energy)大值区是产生极端大风的重要环境条件,地面强冷池以及0-3 km风垂直切变对前向传播起到了重要作用。强降水型QLCSs产生的降水极端性较前一类型更为突出,天气尺度强迫相对较弱,水汽条件极其充沛,具有暖区降水性质,地面弱冷池或地形与低层南风气流相互作用维持的后向传播是其发展和慢速移动的主要机制,也是产生极端强降水的直接原因。由统计结果可知,地形在华北QLCSs形成中起到了重要作用,筛选两个代表性线状对流过程进行高分辨率数值模拟试验,探究QLCSs的线状结构的形成机理。2013年8月4日的线状结构形成过程中,大气环境偏干,上坡风导致的MAULs(moist absolutely unstable layers)是触发线状对流的重要原因:由于白天日照,山区升温快于盆地,形成上坡风,边界层风场沿山脉辐合明显,持续的垂直上升运动导致山脉低空水汽辐合,沿山脉走向形成了水汽饱和带,最终对流在MAULs区域触发,回波也表现出沿山脉走向的带状结构。2016年7月24日QLCSs过程的线状结构形成时,大气环境偏湿,而且线状回波的形成发展可分为两个阶段:第一阶段,喇叭口的南侧山区不断触发新对流,并在引导气流的作用下移入喇叭口的北侧平原地区,单体在对流主体后部合并发展,线状结构逐渐形成,敏感性试验发现去除南侧山体后,不再有带状雨带形成;第二阶段,对流发展到成熟阶段,地面冷池随之形成,暖湿的南风气流在线状回波的南侧与冷池的出流相互作用,触发出新的对流,后向传播维持了回波的线状形态。
张柳[5](2020)在《2016-2017年我国中东部地区中尺度对流系统引发暴雨事件的统计特征和个例研究》文中进行了进一步梳理在我国中东部地区的天气事件中,中尺度对流系统(Mesoscale Convective System,MCS)引发的暴雨事件往往突发性强、雨量较大。在全球气候变化的背景下,其对人们生产生活的影响日益凸显,因此此类事件一直是我国气象研究的重点。本文首先依据引发降水的天气系统,对2016-2017年我国中东部地区的暴雨事件进行分类统计。在此基础上,详细分析了各类MCS型暴雨事件的时空分布特征,并研究了发生频次最多、平均持续时间最长的多MCS型事件的形成环境。其次,针对2016年7月17-18日湘赣闽地区一次典型的多MCS型暴雨事件,重点分析了降水过程各个阶段MCS的触发和维持机制。主要结论如下:(1)2016-2017年,我国中东部地区共发生204例暴雨事件,根据产生降水的天气系统可将其分为四大类型:天气尺度型、MCS型、小尺度风暴型和无匹配型。由引发暴雨事件的MCS的组织结构和运动特征,MCS型暴雨事件又分为先导层状MCS型、平行层状MCS型、尾随层状MCS型、邻近层状MCS型、准静止后向建立MCS型、无组织MCS型和多MCS型。总体来看,天气尺度型暴雨事件的发生频率最高。其中,低涡/切变线比具有锋面的环境更容易引发暴雨事件。在MCS型暴雨事件中,多个MCS共同影响产生的事件最为常见。(2)我国中东部的MCS型暴雨事件主要集中在华南沿海地区、长江以南地区、长江下游地区和黄淮流域地区。其中,多MCS型是华南和长江中游地区主要的MCS暴雨事件类型。MCS型暴雨事件多发生在4月至10月,其中7月发生频次最多。春季到夏季,事件的多发区域从南到北推移,并在秋季回到华南地区。从日变化的角度来看,许多MCS型暴雨事件发生在当地时间的下午至傍晚,降水在午后左右达到旺盛,并在天黑之前结束。相对而言,多MCS型事件的降水能够在一天内更多的时次开始、旺盛和结束。MCS型事件的各子类别中,多MCS型事件的极端降水持续时间更长。(3)在所有MCS型暴雨事件中,多MCS型事件的频次最多、平均持续时间最长。依据最大小时雨强在降水生命期中的位置,可将其分为早期旺盛型和晚期旺盛型两类。分别研究两种类型暴雨事件的形成环境发现,二者均发生在850h Pa具有较强的低空西南急流、降水中心位置处呈现正涡度平流的环境中。然而,两种类型事件的上升运动、降水发生时的空气湿度和不稳定条件却有较大差异。其中,早期旺盛型暴雨事件发生之前,降水中心位置附近有明显的水汽辐合和更高的假相当位温(θse)梯度,而晚期旺盛型发生前,降水中心位置处西南急流的南风分量更强、θse较高。此外,早期旺盛型暴雨事件具有更加明显的湿度条件,大气不稳定潜势更强,抬升凝结高度较低。由此可见,早期旺盛型暴雨事件是由前期环境的上升运动和暖湿特征所引起,而晚期旺盛型的产生则与事件发生后的暖湿气流输送有关。(4)对2016年7月17-18日发生在湘赣闽地区的暴雨事件研究表明,降水是在西太副高东撤、高空短波槽东移、中低层切变线维持的大尺度背景下,配合925h Pa到500h Pa间中尺度辐合作用,以及200h Pa高空强辐散的抽吸作用产生。降水过程中主要有四个阶段性的MCS活动。对流的后向建立和邻近层状的动态结构是降水初期MCS发展和组织的主要方式,而晚期旺盛降水阶段MCS的组织形式则为准平行层状型。早期旺盛降水阶段MCS发展过程中雨带组织化增强,呈现邻近层状型特征,而降水后期MCS的发展最初表现为显着的对流单体后向建立,后期则以雨带的分裂与新生为主。各个阶段MCS的触发和维持机制各有差异:边界层辐合上升是降水初期MCS的主要触发机制,对流降水蒸发冷却形成的近地面冷池对MCS的组织和维持起重要作用。晚期旺盛降水阶段MCS的触发与大气环境、地形抬升和第一阶段冷池出流有关,低层切变线附近气流辐合产生的上升运动触发不稳定能量释放,使得系统得以维持。前两个阶段MCS发展后期,对流降水蒸发形成的冷池不断推移,抬升偏南气流到达自由对流高度,触发第三阶段MCS。对流启动后,冷池出流边界向东南方向移动,持续触发新的单体。降水后期的MCS在西南暖湿气流加强的环境中形成,暖湿空气抬升触发不稳定能量释放是系统维持的关键因素。
王艳兰,伍静,唐桥义,王娟,王军君[6](2020)在《2019年6月桂林三次强降水天气成因对比分析》文中认为利用多普勒雷达、气象卫星、自动气象站等监测数据以及NCEP再分析资料,对桂林2019年6月6—12日接连3次强降水天气过程的环流背景、影响系统与形成原因进行了对比分析。结果表明:(1) 3次过程按影响系统分属暖区暴雨、低涡暴雨和锋面暴雨过程,均发生在高空急流右侧辐散、低空急流左侧辐合叠加区。(2) 3次过程均受500 hPa短波槽和地面中尺度辐合线影响,但第1次过程中西南急流及地形等、第2次过程中低涡切变线、第3次过程中冷锋也起到重要作用。(3) 3次过程的触发系统不同,第1次暖区暴雨过程迎风坡地形对其起触发作用,西南急流使得后向传播的对流云带维持;第2次低涡暴雨过程的触发系统为低层位于贵州一带的西南涡,西部冷空气侵入与西南急流加强是低涡对流云团维持较长时间的原因;第3次锋面暴雨的触发系统为冷锋,锋面配合锋前暖湿气流使对流云带加强。(4)第1次过程暖区暴雨MCS模态主要为线状后向扩建类,极端强降水出现在线对流中后端;第2次过程低涡暴雨MCS模态为涡旋类,极端强降水出现在涡旋中心附近;第3次过程锋面暴雨MCS模态由前期后部层云区线状对流转为层状云包裹对流系统,强降水发生在线对流弯曲或中心强回波处。
孟智勇,张福青,罗德海,谈哲敏,方娟,孙建华,沈学顺,张云济,汪曙光,韩威,赵坤,朱磊,胡永云,薛惠文,马亚平,张丽娟,聂绩,周瑞琳,李飒,刘泓君,朱宇宁[7](2019)在《新中国成立70年来的中国大气科学研究:天气篇》文中研究说明天气指某一个地区距离地表较近的大气层在短时间内的具体状态.大气中气象要素的空间分布可表现为各种瞬息万变的天气现象,这些天气的分布和变化是由不同时空尺度的天气系统引起的.天气与民生息息相关,其发展演变一直是大气科学研究和应用的重点领域.天气学的发展与观测系统、动力学理论和数值模式的发展密切相连.中国从20世纪50年代初开始建设观测网,到目前已建成门类齐全、布局合理的地基、空基和天基综合气象观测系统.特别是新一代稠密雷达网以及风云卫星系列的发展以及多次大型野外观测试验的实施使我们对天气的认识从宏观的天气形势深入到中小尺度天气系统精细热动力、云微物理结构和演变特征.观测系统的发展同时也促进了理论、数值模式和模拟的发展,中国已由初期主要以引进国外模式为主发展为目前主要发展具有中国自主知识产权的数值模式系统,基于高分辨数值模拟结果对不同尺度天气的发生发展机理和可预报性有了深入理解.此外,天气学已由初期的独立发展逐渐向多学科交叉方向转变,气候和环境的变化与天气演变之间的相互作用已成为大气科学的热点和前沿问题.文章重点回顾过去70年来中国在对天气演变起重要作用的天气现象及其短期变化过程的物理本质、演变规律和预报方法领域所取得的重大科学和技术成果,主要根据正式发表的文献从大气动力学、天气尺度天气特征、台风及热带天气、强对流天气特征、数值天气预报及资料同化,以及天气与气候、大气物理及大气环境等交叉领域六个方面分别加以综述.
覃卫坚[8](2019)在《广西暴雨气候变化异常特征及其成因研究》文中进行了进一步梳理广西位于华南西部,地形复杂,具有独特的气候特征,是我国暴雨的多发地区,每年因暴雨引发的洪涝灾害给广西造成严重的经济损失和人员伤亡,目前在广西暴雨气候变化及其异常成因方面仍有很多重要问题还没有研究清楚,因此研究广西暴雨多尺度变化异常特征及其成因,加深对暴雨事件频发物理机制的认识,提高广西洪涝灾害预测水平以及防灾减灾非常重要。本文利用1961~2016年广西地面气象观测站逐日降水等资料,使用统计诊断方法,分析了广西暴雨年际和年代际变化、区域性、相关性、同时性气候特征,研究了暴雨年内非均匀性分布气候异常成因、大气季节内振荡对暴雨的调制作用、大范围暴雨大气环流异常变化特征及对太平洋海温年代际振荡(PDO)的响应,揭示了广西暴雨气候变化异常特征及其成因。主要结论如下:揭示了广西暴雨气候变化新特征:以柳州市北部为中心的桂东北地区、以“东巴凤”为中心的桂西山区、沿海地区三个多暴雨中心,既是暴雨雨量占总降水量百分率的大值区,又是暴雨高度集中发生区,夏季桂林和柳州市北部为同时发生暴雨频率高的区域;广西暴雨日数和大范围暴雨具有明显的年代际变化且呈显着增多的趋势,尤其夏季的桂东北和桂东南、秋季的贺州—桂东南发生大范围暴雨的趋势增大。大范围暴雨日数在1970年代最少,最多出现在1990年代和2000年代,1983年发生了由少到多的显着突变;1980年代中期以后广西区域持续性暴雨的年际异常增大,1989年、2011年异常偏少,1994年、2008年异常偏多。揭示了青藏高原地面加热和PDO与广西暴雨的关系。前期冬季青藏高原地面加热强度偏弱,夏季青藏高原东部高空上升速度减弱,中太平洋上空下沉气流增强,副热带高压和贝加尔湖阻塞高压强度偏强,有利于水汽、不稳定能量向广西输送和冷空气南下影响广西,澳大利亚北部越赤道南风偏强,大陆南风偏弱,中国汛期雨带位置偏南,有利于广西暴雨集中度偏大。PDO处于冷位相,高纬度地区槽脊波动增大、定常波强度增强,贝加尔湖阻高偏强,中纬度定常波强度减弱,西太平洋副热带高压强度偏强、脊线偏北、西伸脊点偏西,赤道西太平洋地区上空风垂直切变增强,澳大利亚高压偏强,索马里越赤道气流带明显增强,形成新几内亚岛东北部沿海的上空为反气旋性环流、菲律宾东南部海域上空为气旋性环流、菲律宾东北部海域上空为反气旋性环流、广西到华南沿海地区为气旋环流的波列,造成广西大范围暴雨偏多。广西暴雨受南海夏季风爆发时间、热带季节内振荡(MJO)等影响显着。南海夏季风爆发偏早,南海到中国东部地区和中南半岛到中国中部地区高空温度由冬季“北冷南暖”转为夏季“北暖南冷”的时间异常偏早,中国中部850 h Pa南北风交汇位置随季节变化有明显的波动及前汛期北风最南端位置偏南,广西暴雨集中度偏大。5~7月MJO明显东移,到达菲律宾以东地区或新几内亚岛附近,形成向西北方向传播的波列,经过南海到达广西,从而导致广西暴雨的多发。MJO位于西太平洋-马来西亚海洋性大陆时,影响广西的热带气旋频数和暴雨日数偏多。
吴玉霜[9](2019)在《广西地形分布对前汛期暴雨的影响及其智能计算客观预报方法研究》文中研究指明暴雨灾害是我国破坏性强的自然灾害之一,在发生的同时通常伴有泥石流、滑坡等一系列次生灾害。广西前汛期(4-6月)降水强度大,降水量多,兼受复杂的地理环境影响,具有局地性、突发性和历时短等特点,是华南区域频发暴雨降水的主要地区之一。基于广西1961-2017年共57a的前汛期暴雨强降水数据,文章综合运用EOF分析、小波分析、Mann-Kendall检验、滑动T检验等方法讨论地形因素对降水的影响,并着重分析广西地形对前汛期暴雨降水的空间分布特征,运用天气学诊断法,总结归纳出广西1961-2017年期间前汛期暴雨的发展规律、形成机理和年际变化特征。进一步根据广西地形分布和降水气候特征,将广西分为3个不同区域,分别建立基于KPCA特征提取方法与随机森林算法的智能计算集合客观预报模型,对广西前汛期暴雨进行实际预报预测。得到以下结论:(1)在地形影响下,广西地区前汛期暴雨的空间分布格局为东北多,西南少,有3个高值中心和1个低值中心,高值区分别是融水、永福等桂北地区,桂中北地区的金秀、蒙山等地以及东兴等沿海地区,低值区为宁明一带。(2)广西前汛期暴雨总量的年际变化显着,存在明显的1-2a、4-6a的短周期变化,以及24a左右的长周期变化。在长期变化趋势上,广西前汛期暴雨降水量整体变化较为平缓,突变不明显。(3)采用EOF方法对广西前汛期暴雨总量进行空间特征分析发现,第一模态为全区一致性且呈由东到西递减分布,高值区位于临桂、永福和来宾等地,低值区位于桂西北地区,方差贡献率为30.14%。第二模态为西北-东南反向分布的空间分布特征,高值区位于东兰、田东等地,桂东南大片地区为负值区,方差贡献率为12.21%。第三模态为南北反向且由北向南递减分布的空间格局,高值区位于永福、兴安等地,低值中心位于桂南地区,方差贡献率为9.4%。(4)采用EOF分解得到的特征向量所对应的时间系数分析广西前汛期暴雨的时间变化特征,第一模态的时间系数在20至-40之间,存在着3-4a的振荡周期,处于整体偏涝的类型。第二模态的时间系数在6至-6之间,呈下降趋势,存在一个12a左右的振荡周期,处于整体偏旱的类型。第三模态的时间系数在15至-15之间,呈上升趋势,处于北部地区偏涝,南部地区偏旱的类型。(5)对广西前汛期大范围持续性暴雨的统计分析发现,广西前汛期大范围持续性暴雨过程共出现41次,年平均为0.73次。4月份出现的频次最少,5月份次之,6月份出现的频次最多。广西大范围持续性暴雨的年际变化、月际变化较为明显。线性趋势分析发现,4月份略有减少的趋势,而5月和6月份则是逐渐增多的,其中5月份增加的趋势较为明显。(6)不同月份发生大范围持续性暴雨的影响机制都各异,分别表现为4月份的两槽两脊并在低纬度地区有分裂出的短波槽影响广西;5月份为两脊一槽形势;6月份为一槽一脊配合中低纬度的东亚槽。这些环流形势均有利于冷空气的堆积并南下影响,并且广西在5月和6月份同时受到副高边缘西南气流的影响,低层辐合气流明显,有利于低层水汽的不断抬升。(7)水汽、动力条件分析表明,月份的变化对应着不同的水汽来源,其中,4月份水汽来源主要为中国南海和孟加拉湾;5月份,则是南海、印度洋以及孟加拉湾;6月份的水汽来源以印度洋和孟加拉湾为主。4-6月广西上空上升运动较强,对应的不稳定能量较大,为广西暴雨的产生提供了有利的触发机制。(8)采用KPCA特征提取方法和随机森林算法相结合对预报因子进行数据挖掘机器学习,建立一种新的非线性人工智能计算预报模型,对广西前汛期暴雨进行建模研究,预报结果表明,新模型全区前汛期暴雨预报的TS评分为0.14,欧洲中心数值预报产品(ECMWF)全区TS评分仅为0.07;按地形和气候特征要素分区预报的结果发现,一区,新模型TS评分为0.16,欧洲细网格为0.12;二区,新模型TS评分为0.10,欧洲细网格仅为0.01;三区,新模型TS评分为0.14,欧洲细网格只有0.02,新模型结果均优于ECMWF的集合预报结果。对比结果表明,该预报模型结果稳定,精度较高,数值预报产品释用预报效果好,对广西前汛期暴雨的实际预报研究具有一定的科学指导意义。
张亚男[10](2018)在《昆明准静止锋进退及维持诊断分析》文中研究表明昆明准静止锋是中国西南地区东部云贵高原上一个经常出现的天气系统,它对云南、贵州和四川南部地区的天气有着极大的影响。本文利用天气学诊断、锋生函数诊断、合成分析、数值模拟等方法,挑选了适合研究昆明准静止锋的温湿参数,讨论了昆明准静止锋进退及维持时的环流特征、锋面结构及锋生函数各项的特征与作用,揭示了锋面移动的成因及云贵高原大地形在锋面运动中所起的作用。主要的研究结果表明:(1)通过对比位温、相当位温、广义位温及其对应的锋生函数,发现相当位温对昆明准静止锋锋面位置、锋区强度及锋生情况的描述最好。(2)从锋区结构来看,当锋后低层到地面等温线呈“V”型分布,锋后正的次级环流相对深厚,锋面易西进;当锋后低层呈较深厚的逆温层且锋后正次级环流较浅薄,锋面易东退;当逆温层仅限于低层而近地面为冷中心,锋面易维持。东西风风速零线西端在锋面左侧,锋面易西进,反之锋面易东退;零线的位置与锋面基本重合,锋面易维持。(3)对于锋区内的锋生情况,当锋面维持少动时,强锋生区与锋区完全重合,锋生作用很强;锋面西进时,锋区内的锋生强度增大且强锋生区向上发展,锋生区偏向锋区左侧;锋面减弱东退时,仅在低层出现弱的锋生区,且锋生区偏向锋区右侧。(4)对于锋生函数四项,非绝热加热项在锋面出现明显移动时,产生的锋生现象与锋面移动方向一致;锋面维持时,此项与锋面的日变化有关。垂直运动倾斜项在锋面西进时105oE附近迎风坡出现强烈的锋消现象,锋面东退和维持时出现弱锋生现象。水平辐散项产生的强锋生区在锋面左侧时,指示锋面西进,反之指示锋面东退;锋面维持时,强锋生区与锋区基本重合。水平变形项中切变变形起主要的锋生作用,而由于冷气团受迎风坡影响,导致伸缩变形在104oE以东的锋后区域产生较强的锋生现象。(5)通过增减地形发现,当地形高度降低时,静止锋将变为冷锋快速西移锋消,且地形高度越低,锋面移动速度越快;当地形高度增加时,高原大地形对冷气团的阻挡作用将加大,随着地形高度的增加,锋面维持的位置越偏东。
二、2003年广西最大一次锋面暴雨天气过程特征分析(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、2003年广西最大一次锋面暴雨天气过程特征分析(论文提纲范文)
(1)2020年广西暴雨灾害天气综述与分析(论文提纲范文)
引言 |
1 资料和方法 |
2 2020年广西暴雨天气概况 |
3 影响广西最严重的暴雨灾害过程分析 |
3.1 雨情 |
3.2 天气形势分析 |
4 小结 |
(2)广西暴雨业务预报技术回顾与展望(论文提纲范文)
引言 |
1 广西暴雨业务预报技术发展回顾 |
2 广西暴雨研究进展 |
2.1 广西暴雨天气机理研究 |
2.2 广西几种主要暴雨类型的统计分析 |
2.2.1 锋面暴雨 |
2.2.2 暖区暴雨 |
2.2.3 西南涡暴雨 |
2.2.4 热带系统暴雨 |
3 暴雨客观预报技术在广西的应用 |
3.1 多源资料在广西暴雨预报上的运用 |
3.2 数值预报产品在广西暴雨预报的释用 |
3.3 集合预报技术在广西暴雨预报上的应用 |
3.4 人工智能在广西暴雨预报上的应用 |
4 广西暴雨业务预报技术存在的主要问题及改进建议 |
(3)热带扰动和弱冷空气引发的海南岛秋汛期特大暴雨时空分布特征及形成机制研究(论文提纲范文)
摘要 |
ABSTRACT |
第一章 绪论 |
1.1 引言 |
1.2 东亚低纬地区暴雨研究进展 |
1.2.1 夏季风的撤退对东亚低纬地区暴雨的影响 |
1.2.2 华南暖区暴雨 |
1.2.3 海南岛秋汛期特大暴雨 |
1.3 问题的提出 |
1.4 研究内容 |
1.5 资料、方法和定义 |
1.5.1 资料 |
1.5.2 方法 |
1.5.3 海南岛秋汛期特大暴雨的定义 |
第二章 海南岛秋汛期降水时空分布特征 |
2.1 海南岛秋汛期降水总体特征 |
2.1.1 概况 |
2.1.2 海南岛降水与华南各区及周边邻近地区降水分布的差异 |
2.1.3 海南岛秋汛期不同量级强降水的分布特征 |
2.1.4 海南岛秋汛期不同类型强降水的分布特征 |
2.1.5 海南岛秋汛期降水分布的地域特征 |
2.2 热带扰动和弱冷空气引发的海南岛秋汛期特大暴雨时空分布特征 |
2.2.1 年代际分布 |
2.2.2 月际分布特征 |
2.2.3 特大暴雨日空间分布特征 |
2.2.4 最大降水量极值空间分布特征 |
2.2.5 秋汛期特大暴雨短、中、长过程的频数分布特征 |
2.3 本章小结 |
第三章 影响海南岛秋汛期特大暴雨的大尺度环流特征 |
3.1 海南岛秋汛期逐候环流特征 |
3.1.1 对流层上层 |
3.1.2 对流层中、低层 |
3.2 秋汛期南海中北部偏东低空急流形成的机理 |
3.2.1 南海中北部低空急流特征 |
3.2.2 南海中北部低空急流形成的热力、动力学机制 |
3.2.3 南海中北部低空急流对海南岛降水的影响 |
3.3 典型秋汛期特大暴雨个例的天气学特征对比分析 |
3.3.1 个例降水概况 |
3.3.2 天气系统配置 |
3.3.3 典型个例的环流异常特征 |
3.4 不同强度秋汛期暴雨个例的对比分析 |
3.4.1 不同强度秋汛期暴雨个例过程概况 |
3.4.2 环流形势和动力特征对比分析 |
3.5 1971-2010 年海南岛秋汛期特大暴雨个例合成场分析 |
3.5.1 合成方法 |
3.5.2 环流合成场特征 |
3.6 本章小结 |
第四章 海南岛秋汛期特大暴雨典型个例的中尺度系统发生发展机制 |
4.1 过程概况 |
4.1.1 雨情 |
4.1.2 环流系统配置 |
4.2 暴雨过程中热带中尺度涡旋系统发生发展的热力、动力学分析 |
4.2.1 热带中尺度涡旋的云图演变 |
4.2.2 热带中尺度涡旋生成发展的热力、动力学分析 |
4.3 深对流触发、发展、维持的机制 |
4.3.1 最强降水日中尺度雨团与地面流场演变特征 |
4.3.2 湿中性层结对深对流形成、维持的影响机制 |
4.3.3 局地锋生过程及其对对流组织发展的影响 |
4.3.4 垂直风切变对对流发展的影响 |
4.4 本章小结 |
第五章 地形对热带扰动和弱冷空气引发的海南岛秋汛期特大暴雨的影响 |
5.1 地理分布特征 |
5.2 个例挑选和模拟方案设计 |
5.2.1 个例暴雨实况和环流形势 |
5.2.2 模式和试验设计 |
5.2.3 模拟结果检验 |
5.3 模拟结果分析 |
5.3.1 降水量的差异 |
5.3.2 水平风场的差异 |
5.3.3 大气垂直结构的差异 |
5.3.4 地形变化对水平局地锋生的影响 |
5.3.5 水汽输送和辐合强度的变化 |
5.4 本章小结 |
第六章 总结和展望 |
6.1 主要结论 |
6.2 研究创新点 |
6.3 不足与展望 |
参考文献 |
致谢 |
作者简介 |
在读期间主要科研成果 |
(4)华北地区线状对流的活动特征与机理研究(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
1.1 选题背景及研究意义 |
1.2 国内外研究进展 |
1.2.1 线状对流系统分类统计研究进展 |
1.2.2 线状对流系统发展机理研究进展 |
1.2.3 线状对流系统识别算法研究进展 |
1.2.4 线状对流系统致灾机理研究进展 |
1.3 研究目标、方法及章节安排 |
第二章 线状对流系统识别技术与评估 |
2.1 引言 |
2.2 资料与方法 |
2.3 线状对流系统识别技术 |
2.3.1 识别技术流程简介 |
2.3.2 二值化及闭运算预处理 |
2.3.3 骨架提取及修剪 |
2.3.4 骨干长短轴量化 |
2.3.5 追踪算法介绍 |
2.4 骨架识别方法评估 |
2.5 骨架识别技术不确定性讨论 |
2.6 本章小结 |
第三章 华北地区线状对流的活动统计特征 |
3.1 引言 |
3.2 资料与方法 |
3.3 华北线状对流系统时空分布特征 |
3.4 华北线状对流系统分类统计特征 |
3.5 小结 |
第四章 华北地区线状对流致灾性天气条件分析 |
4.1 引言 |
4.2 两类线状对流系统致灾天气统计 |
4.3 两类极端性强天气线状对流系统形成的环境条件分析 |
4.3.1 总体和两类QLCSs环境条件统计对比 |
4.3.2 强雷暴大风型QLCSs的环流背景和机制 |
4.3.3 强降水型QLCSs的环流背景和机制 |
4.4 小结 |
第五章 强雷暴大风型QLCSs线状结构形成模拟研究 |
5.1 引言 |
5.2 实况分析 |
5.3 数值模式分析 |
5.3.1 WRF数值模拟设计方案 |
5.3.2 模拟结果验证 |
5.3.3 模拟结果诊断分析 |
5.4 强雷暴大风型QLCS线状结构形成机理概念模型 |
5.5 小结 |
第六章 强降水型QLCSs线状结构形成模拟研究 |
6.1 引言 |
6.2 实况分析 |
6.2.1 过程天气背景 |
6.2.2 回波演变第一阶段实况分析 |
6.2.3 回波演变第二阶段实况分析 |
6.3 数值模拟分析 |
6.3.1 WRF数值模拟设计方案 |
6.3.2 模拟结果验证 |
6.3.3 第一阶段模拟结果诊断分析 |
6.3.4 第二阶段模拟结果诊断分析 |
6.3.5 地形敏感性试验 |
6.4 强降水型QLCS线状结构形成机理概念模型 |
6.5 小结 |
第七章 结论与展望 |
7.1 主要结论 |
7.2 创新点 |
7.3 存在的不足和工作展望 |
参考文献 |
致谢 |
附:博士期间第一作者发表的文章 |
(5)2016-2017年我国中东部地区中尺度对流系统引发暴雨事件的统计特征和个例研究(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
1.1 选题意义 |
1.2 国内外研究进展 |
1.2.1 我国暴雨预报与研究的阶段性进程与结果 |
1.2.2 暴雨中尺度对流系统的特征 |
1.2.3 暴雨中尺度对流系统的观测 |
1.2.4 暴雨中尺度对流系统的组织结构 |
1.2.5 暴雨中尺度对流系统的生成环境条件 |
1.2.5.1 暴雨中尺度对流系统的生成环境 |
1.2.5.2 暴雨中尺度对流系统的发生发展机制 |
1.3 科学问题的提出 |
1.4 研究内容与目的 |
1.5 章节安排 |
第二章 资料和分析方法介绍 |
2.1 资料介绍 |
2.1.1 中国国家级气象台站逐小时降水数据集 |
2.1.2 多普勒雷达反射率资料 |
2.1.3 韩国气象厅历史天气图 |
2.1.4 再分析数据 |
2.1.4.1 NCEP CFSv2再分析资料 |
2.1.4.2 ERA5 再分析资料 |
2.1.5 探空数据 |
2.1.6 地面加密自动气象站逐小时资料 |
2.2 主要方法介绍 |
2.2.1 基于雷达回波拼图的MCS识别、跟踪 |
2.2.2 MCS动态结构的分类依据 |
第三章 基于天气系统的我国中东部地区的暴雨事件分类 |
3.1 引言 |
3.2 暴雨事件的定义 |
3.3 基于天气系统的暴雨事件分类 |
3.3.1 天气尺度型 |
3.3.2 MCS型 |
3.3.2.1 LS型暴雨事件个例 |
3.3.2.2 PS型暴雨事件个例 |
3.3.2.3 TS型暴雨事件个例 |
3.3.2.4 TL/AS型暴雨事件个例 |
3.3.2.5 BB型暴雨事件个例 |
3.3.2.6 多MCS型暴雨事件个例 |
3.3.2.7 无组织MCS型暴雨事件个例 |
3.3.3 SSS型 |
3.3.4 无匹配型 |
3.4 各类型暴雨事件的概况 |
3.5 本章小结 |
第四章 2016-2017 年我国中东部地区MCS引起暴雨事件的统计特征 |
4.1 引言 |
4.2 降水特征物理量的定义 |
4.3 MCS引起暴雨事件的时空特征 |
4.3.1 空间分布特征 |
4.3.2 月变化特征 |
4.3.3 日变化特征 |
4.4 本章小结 |
第五章 2016-2017年我国中东部地区MCS引起暴雨事件的环境特征 |
5.1 引言 |
5.2 降水特征 |
5.3 环境场特征 |
5.4 个例验证 |
5.5 本章小结 |
第六章 一次湘赣闽地区MCS引起暴雨事件的观测分析 |
6.1 引言 |
6.2 个例介绍 |
6.2.1 降水实况分析 |
6.2.2 强降水形成的天气背景 |
6.2.3 强降水形成的局地环境 |
6.3 中尺度对流系统的活动和组织方式 |
6.3.1 对流系统的活动特征 |
6.3.2 雨带演变与对流系统的组织方式 |
6.4 MCS的触发与维持 |
6.4.1 降水初期阶段MCS的触发和维持 |
6.4.2 晚期旺盛降水阶段MCS的触发和维持 |
6.4.3 早期旺盛降水阶段MCS的触发和维持 |
6.4.4 降水后期阶段MCS的触发和维持 |
6.5 本章小结 |
第七章 总结与展望 |
7.1 主要结论 |
7.2 价值与创新 |
7.3 未来展望 |
参考文献 |
作者简介 |
致谢 |
(6)2019年6月桂林三次强降水天气成因对比分析(论文提纲范文)
引言 |
1 强降水过程实况与特征 |
2 环流背景与影响系统对比分析 |
3 强降水成因对比分析 |
3.1 水汽及大气层结对比分析 |
3.2 动力机制对比分析 |
3.2.1 低层暖湿平流、水汽辐合与中高层弱干冷空气侵入 |
3.2.2 中低层暖湿气流辐合上升与对流云顶达200 hPa |
3.3 对流云团触发及维持机制对比分析 |
3.3.1 第1次暖区暴雨过程对流云发展演变特征 |
3.3.2 第2次低涡暴雨过程对流云发展演变特征与触发机制 |
3.3.3 第3次锋面暴雨过程对流云发展演变特征与触发机制 |
3.4 中尺度对流系统(MCS)的雷达回波特征对比分析 |
4 结论与讨论 |
(7)新中国成立70年来的中国大气科学研究:天气篇(论文提纲范文)
1 引言 |
2 大气动力学研究 |
2.1 大气适应过程的尺度理论 |
2.2 行星波动力学 |
2.3 大气环流及其异常现象 |
3 天气尺度天气特征研究 |
3.1 锋面 |
3.2 急流 |
3.3 低涡 |
3.4 华南前汛期暴雨 |
3.5 寒潮、雨雪冰冻天气 |
4 台风和热带天气研究 |
4.1 台风及热带大气动力学 |
4.1.1 台风 |
4.1.2 副热带高压 |
4.1.3 热带波动和MJO |
4.2 台风及热带大气过程观测研究 |
4.3 台风和热带大气过程数值预报技术 |
5 强对流天气研究 |
5.1 观测 |
5.2 发生发展特征和机理研究 |
5.3 预报和预警 |
6 数值天气预报及资料同化研究 |
6.1 数值天气预报模式的研究进展 |
6.2 业务数值天气预报的发展和应用 |
6.3 资料同化方法的研究 |
6.4 业务数值预报模式资料同化系统的发展 |
7 天气与气候、大气物理及环境交叉研究 |
7.1 气候变化背景下的天气长期演变特征 |
7.2 极端降水对未来气候暖化的响应研究 |
7.3 降水和雷暴的长期变化特征对空气污染的响应研究 |
7.4 降水和雷暴的短时变化对空气污染的响应研究 |
8 结语 |
(8)广西暴雨气候变化异常特征及其成因研究(论文提纲范文)
中文摘要 |
ABSTRACT |
第一章 绪论 |
1.1 研究意义 |
1.2 国内外研究背景 |
1.3 科学问题的提出 |
1.4 具体章节安排 |
第二章 资料与方法 |
2.1 资料 |
2.2 方法 |
第三章 广西暴雨气候变化新特征 |
3.1 暴雨空间分布特征 |
3.2 暴雨季节变化特征 |
3.3 暴雨年际及年代际气候变化特征 |
3.4 暴雨区域性特征 |
3.5 暴雨区域相关性特征 |
3.6 暴雨同时性特征 |
3.7 各站暴雨过程历史极端值 |
3.8 本章小结和讨论 |
第四章 广西暴雨年内非均匀性分布异常成因 |
4.1 广西暴雨集中度(期)气候特征 |
4.2 广西暴雨集中度(期)异常对西太平洋副热带高压变化的响应 |
4.3 热带季节内振荡对广西暴雨集中度的调制作用 |
4.4 太平洋海温异常对暴雨集中度(期)的影响 |
4.5 季风对暴雨集中度异常的影响 |
4.6 冬季青藏高原地面加热场对广西暴雨集中度的影响 |
4.7 本章小结 |
第五章 大气季节内振荡对广西暴雨的调制作用 |
5.1 MJO对广西暴雨的调制作用 |
5.2 MJO对影响广西热带气旋发生发展的调制作用 |
5.3 大气季节内振荡对广西区域持续性暴雨的影响 |
5.4 本章小结 |
第六章 广西大范围暴雨年代际增多的气候成因 |
6.1 广西典型大范围暴雨过程的天气形势 |
6.2 大气环流异常的年代际变化特征 |
6.3 广西大范围暴雨过程的大气环流异常特征 |
6.4 广西大范围暴雨与太平洋海温年代际振荡(PDO)的关系 |
6.5 PDO对高度场的影响 |
6.6 PDO对风场的影响 |
6.7 PDO对大气对流运动的影响 |
6.8 本章小结 |
第七章 总结和展望 |
7.1 全文总结 |
7.2 特色与创新 |
7.3 未来工作展望 |
参考文献 |
个人简历 |
致谢 |
(9)广西地形分布对前汛期暴雨的影响及其智能计算客观预报方法研究(论文提纲范文)
摘要 |
ABSTRACT |
1.绪论 |
1.1 研究背景 |
1.2 国内外研究进展 |
1.2.1 暴雨成因及特征 |
1.2.2 地形对暴雨的影响 |
1.2.3 暴雨预报研究进展 |
1.3 研究目的及意义 |
1.4 主要研究内容 |
1.5 研究技术路线 |
2.研究区域概况、资料、方法 |
2.1 研究区域概况 |
2.1.1 地理位置 |
2.1.2 地形地貌 |
2.1.3 气候条件 |
2.1.4 河流分布 |
2.1.5 社会经济 |
2.2 资料来源及处理 |
2.3 方法 |
2.3.1 EOF分析方法 |
2.3.2 Mann-Kendall检验 |
2.3.3 ArcGis反距离权重差值法 |
2.3.4 小波分析 |
2.3.5 滑动T检验 |
3.地形对广西前汛期暴雨的影响分析 |
3.1 地形因子对降水的影响 |
3.2 地形影响下广西前汛期暴雨时空分布特征 |
3.2.1 空间分布特征 |
3.2.1.1 暴雨总量的空间分布特征 |
3.2.1.2 基于EOF分析的暴雨空间分布特征 |
3.2.2 时间演变特征 |
3.2.2.1 年暴雨量的时间演变特征 |
3.3.2.2 基于EOF分析的暴雨时间变化特征 |
3.3 小结 |
4.广西前汛期大范围持续性暴雨气候特征分析 |
4.1 广西前汛期大范围持续性暴雨统计特征 |
4.2 广西前汛期大范围持续性暴雨的环流诊断分析 |
4.2.1 高层环流异常及急流分析 |
4.2.2 中层环流异常 |
4.2.3 低层异常辐合 |
4.3 物理量场合成分析 |
4.3.1 水汽来源 |
4.3.2 水汽通量散度 |
4.3.3 湿度条件 |
4.3.4 动力条件分析 |
4.3.5 不稳定能量场分析 |
4.4 小结 |
5.基于KPCA与随机森林算法的广西前汛期暴雨释用预报 |
5.1 方法原理 |
5.1.1 随机森林算法 |
5.1.2 KPCA主成分分析方法 |
5.2 试验数据处理 |
5.2.1 预报对象、因子及其处理 |
5.2.2 基于KPCA方法和随机森林算法建模试验 |
5.3 试验结果分析 |
5.4 小结 |
6.总结与展望 |
6.1 主要结论 |
6.2 特色和创新 |
6.3 未来工作展望 |
参考文献 |
攻读硕士期间发表的论文及参与的项目 |
致谢 |
(10)昆明准静止锋进退及维持诊断分析(论文提纲范文)
摘要 |
abstract |
第一章 绪论 |
1.1 引言 |
1.2 有关昆明准静止锋的相关研究 |
1.3 锋生函数在昆明准静止锋中的应用 |
1.4 与锋面有关的温湿参数研究 |
1.5 本文研究内容 |
第二章 资料和方法 |
2.1 资料 |
2.2 方法 |
2.2.1 锋生函数的计算 |
2.2.2 昆明准静止锋锋面位置客观判识方法 |
2.2.3 位温、相当位温及广义位温的计算 |
第三章 昆明准静止锋天气系统及典型个例分析 |
3.1 昆明准静止锋天气系统 |
3.1.1 基本特征 |
3.1.2 概念模型 |
3.2 典型个例分析 |
3.2.1 过程描述 |
3.2.2 大尺度背景场 |
3.2.3 要素场分析 |
3.3 本章小结 |
第四章 描述昆明准静止锋的三种温湿参数对比 |
4.1 位温、相当位温及广义位温的基本概念 |
4.2 三种温湿参数对锋面位置和强度的描述 |
4.2.1 无西南暖湿气流影响 |
4.2.2 有西南暖湿气流影响 |
4.3 三种温湿参数计算的锋生函数 |
4.4 三种温湿参数对温度场和湿度场的描述 |
4.5 各守恒量的优缺点 |
4.6 本章小结 |
第五章 锋生函数诊断分析 |
5.1 x和y方向上的锋生函数分析 |
5.2 增强西进型的锋生函数诊断 |
5.2.1 总锋生函数特征 |
5.2.2 锋生函数各项特征 |
5.2.3 锋面生消及增强西进的成因分析 |
5.3 减弱东退型的锋生函数诊断 |
5.3.1 总锋函数生特征 |
5.3.2 锋生函数各项特征 |
5.3.3 锋面减弱东退的成因分析 |
5.4 长期维持型的锋生函数诊断 |
5.4.1 总锋生函数特征 |
5.4.2 锋生函数各项特征 |
5.4.3 锋面维持少动的成因分析 |
5.5 本章小结 |
第六章 昆明准静止锋进退及维持合成分析 |
6.1 合成方法 |
6.2 合成环流背景特征 |
6.3 合成温、湿、风特征 |
6.4 合成锋生函数特征 |
6.4.1 总锋生函数特征 |
6.4.2 锋生函数各项特征 |
6.5 本章小结 |
第七章 昆明准静止锋锋生函数数值模拟研究 |
7.1 模式设计 |
7.2 控制实验 |
7.2.1 对锋面位置及总锋生函数的模拟 |
7.2.2 对锋生函数各项的模拟 |
7.3 地形对锋生函数影响的数值实验 |
7.3.1 非绝热加热项模拟 |
7.3.2 水平辐散项模拟 |
7.3.3 水平变形项模拟 |
7.4 本章小结 |
第八章 总结与讨论 |
8.1 总结 |
8.2 讨论 |
参考文献 |
硕士在读期间科研成果 |
致谢 |
四、2003年广西最大一次锋面暴雨天气过程特征分析(论文参考文献)
- [1]2020年广西暴雨灾害天气综述与分析[J]. 刘国忠,周云霞,覃月凤,翟舒楠,梁嘉颖,黄明策. 气象研究与应用, 2021(01)
- [2]广西暴雨业务预报技术回顾与展望[J]. 林开平,陈伟斌,刘国忠,覃月凤,董雪晗,熊思章. 气象研究与应用, 2020(04)
- [3]热带扰动和弱冷空气引发的海南岛秋汛期特大暴雨时空分布特征及形成机制研究[D]. 冯文. 南京信息工程大学, 2020(01)
- [4]华北地区线状对流的活动特征与机理研究[D]. 盛杰. 南京信息工程大学, 2020
- [5]2016-2017年我国中东部地区中尺度对流系统引发暴雨事件的统计特征和个例研究[D]. 张柳. 南京信息工程大学, 2020
- [6]2019年6月桂林三次强降水天气成因对比分析[J]. 王艳兰,伍静,唐桥义,王娟,王军君. 暴雨灾害, 2020(02)
- [7]新中国成立70年来的中国大气科学研究:天气篇[J]. 孟智勇,张福青,罗德海,谈哲敏,方娟,孙建华,沈学顺,张云济,汪曙光,韩威,赵坤,朱磊,胡永云,薛惠文,马亚平,张丽娟,聂绩,周瑞琳,李飒,刘泓君,朱宇宁. 中国科学:地球科学, 2019(12)
- [8]广西暴雨气候变化异常特征及其成因研究[D]. 覃卫坚. 南京信息工程大学, 2019
- [9]广西地形分布对前汛期暴雨的影响及其智能计算客观预报方法研究[D]. 吴玉霜. 南宁师范大学, 2019(01)
- [10]昆明准静止锋进退及维持诊断分析[D]. 张亚男. 云南大学, 2018(01)