吸力面论文-吴宛洋,钟兢军,王会社

吸力面论文-吴宛洋,钟兢军,王会社

导读:本文包含了吸力面论文开题报告文献综述及选题提纲参考文献,主要关键词:压气机叶栅,来流马赫数,叶尖小翼,间隙泄漏

吸力面论文文献综述

吴宛洋,钟兢军,王会社[1](2019)在《来流马赫数对吸力面小翼控制间隙泄漏效果影响的研究》一文中研究指出为了探索来流马赫数的变化对吸力面叶尖小翼间隙泄漏流动控制效果的影响,采用数值模拟软件ANSYS CFX对Ma=0.5、Ma=0.6及Ma=0.7叁个高亚声速下无叶尖小翼叶栅及加装了不同宽度吸力面小翼的扩压叶栅进行了数值计算。结果表明:当Ma=0.5时,不同宽度吸力面叶尖小翼都可以削弱泄漏涡的强度,改善叶顶间隙流动,降低叶栅流动损失。与原型叶栅相比,SW2.0方案总压损失降低了4.52%。而当来流马赫数逐渐变大时。吸力面叶尖小翼对叶栅顶部流场带来的有效改善作用随之减弱,对流场的消极影响增强。当Ma=0.7时,吸力面叶尖小翼结构增加了流场总压损失。(本文来源于《工程热物理学报》期刊2019年10期)

刘建,乔渭阳,魏佐君,段文华[2](2019)在《吸力面射流对涡轮激波/附面层干涉的影响》一文中研究指出随着涡轮级负荷增大,跨声速涡轮中激波损失在总损失中所占比例越来越大。采用大涡模拟方法对跨声速涡轮叶栅吸力面喉部位置射流对激波/附面层干涉(SWBLI)的影响进行研究。结果表明:射流的引入会加强入射激波强度和SWBLI,但分离泡长度有所减小。激波加强了叶片表面压力波动,在各激波位置波动达到幅值,最大波动幅值达当地时均压力的13%;加入射流后,射流下游吸力面压力波动水平增加,但是SWBLI造成的流动非定常性明显减弱。(本文来源于《航空计算技术》期刊2019年03期)

王巍,唐滔,卢盛鹏,焦建雄,张庆典[3](2019)在《水翼吸力面布置凹槽抑制空化研究》一文中研究指出空化引起不同程度振动、冲击和噪声,加剧物体表面空蚀,使结构提早发生疲劳。为有效抑制和延缓空化发生和空泡脱落,该文提出了在水翼吸力面布置凹槽的方法,旨在通过水翼表面结构的改变来实现空化流动的调节。在数值模拟研究中,采用Realizablek-ε湍流模型和Schnerr-Sauer空化模型,围绕8°攻角下NACA66(MOD)水翼,开展不同空化数、凹槽尺度和凹槽位置对二维水翼空化流场的动力学特性研究,并进一步分析了水翼表面特殊结构抑制空化的机理。结果表明:当片空化发生时,凹槽布置在距水翼前缘0.32弦长位置时,能降低空泡振荡频率,提高水翼水动力性能;当云空化发生时,适当的凹槽表面构型能够使水翼吸力面边界层变薄,边界层分离点滞后,水翼尾缘回流区减薄,吸力面低压区减小,证明了凹槽表面构型对空化抑制的适用性。然而,在水翼吸力面布置凹槽,虽然可以降低水翼表面边界层的厚度,增强抗逆压能力,但却触发了凹槽附近区域回射流的加速。因此,只有当抗逆压梯度能力大于回射流冲击时,才可以实现对空化流动的抑制。该研究成果扩大了空化流动的被动控制方法研究范围,为水力机械空化抑制技术提供了参考。(本文来源于《农业工程学报》期刊2019年02期)

黄莺,张靖周,王春华[4](2018)在《涡轮叶片吸力面扇形孔气膜冷却效率优化》一文中研究指出为了提高气膜冷却效率,采用叁维雷诺时均(RANS)和代理优化模型,对涡轮叶片吸力面特定位置的扇形气膜孔结构进行优化;将孔间距与直径比(P/d)和孔厚径比(t/d)分别固定为4.5和2.5,仅将扇形孔的倾角α、侧向扩展角β和前向扩展角γ作为设计变量;选取气膜孔下游流向距离s与气膜孔直径d的比值s/d=12区域内的面积平均气膜绝热冷却效率作为目标函数,通过径向基神经网络(RBFNN)构建代理模型,并采用遗传算法搜索最优设计点,从而获得吹风比M=1.5时的扇形气膜孔优化结构,并结合流场计算结果,对优化前后的扇形孔气膜冷却性能进行分析。研究结果表明:较大的气膜孔倾角和侧向扩展角以及较小的前向扩展角有利于改善气膜冷却性能;与基准参考扇形孔相比,优化结构面积平均绝热气膜冷却效率提高18%。(本文来源于《中南大学学报(自然科学版)》期刊2018年11期)

葛健,柳阳威,周振华,陆利蓬,孙晓峰[5](2018)在《吸力面波系分布对风扇激波噪声的影响》一文中研究指出数值探究了前缘和吸力面的形状对风扇激波噪声的影响,分析讨论了吸力面上膨胀波和压缩波与前伸激波的干涉对激波噪声的影响机理,提出了降低风扇激波噪声的前缘和吸力面改型方法,分别在一个二维超声叶型和一个叁维跨声转子上进行实验。结果表明优化后的前缘和吸力面形状可有效减弱吸力峰的强度,消除气流在前缘附近的过膨胀和再压缩过程,改善吸力面的波系分布,可降低二维超声叶型的激波噪声约3 dB,降低叁维跨声转子的激波噪声约1.5 dB。(本文来源于《工程热物理学报》期刊2018年11期)

王宇峰,蔡乐,刘勋,周逊,王仲奇[6](2019)在《吸力面不同吹风比切向冷气喷射对跨声速涡轮叶栅气动性能的影响》一文中研究指出为进一步探究跨声速涡轮中吸力面切向冷气喷射对叶栅气动性能及气膜冷却效果的影响,以跨声速涡轮叶栅作为研究对象,采用数值模拟方法,通过在叶片吸力面不同位置开设切向冷气喷射槽,进行不同吹风比下的冷气喷射,对跨声速气冷涡轮叶栅的总体性能以及流场细节进行了详细研究。研究结果表明,吸力面切向冷气喷射有利于减小跨声速涡轮叶栅激波损失,叶栅最大马赫数可减小0.104;切向冷气喷射槽位于尾缘内伸激波反射点上游,且吹风比处于0.75~1.00内时,叶栅能量损失最小;吹风比的增大有利于减小甚至消除冷气槽内分离泡,并能够减小唇部激波强度。(本文来源于《推进技术》期刊2019年05期)

张垲垣,李志刚,宋立明,李军[7](2018)在《槽缝射流旋流比和密度比对涡轮端壁冷却和吸力面泛冷却性能的影响》一文中研究指出针对上游槽缝射流对涡轮端壁冷却性能影响的问题,同时考虑到涡轮端壁的气膜孔射流和叶栅通道间隙泄漏流同样对端壁及叶片吸力面存在冷却效果,采用数值求解叁维Reynolds-Averaged Navier-Stokes(RANS)方程和SST k-ω湍流模型的方法,研究了带预旋上游槽缝射流0.4、0.6、0.8和1.0这4种旋流比和1.0、1.5和2.0这3种密度比对端壁冷却及叶片吸力面泛冷却(二次冷却)性能的影响特性。结果表明:密度比较小时,减小旋流比导致端壁冷却效果降低;密度比较大时,端壁冷却效果随旋流比减小先降低后升高,最低值出现在旋流比为0.8。随密度比的增加,冷却射流对端壁的冷却效果不断降低,冷却效率最低值随旋流比的增加向下游移动。随旋流比增大,槽缝射流对叶片吸力面泛冷却覆盖面积逐渐减小,位置向下游及靠近端壁的方向发展,泛冷却效率不断降低。随冷却射流密度比的增加,吸力面泛冷却面积显着减小,且向靠近端壁的方向移动,泛冷却效率降低。(本文来源于《西安交通大学学报》期刊2018年09期)

贺宜红,刘存良,宋辉,朱惠人,周志翔[8](2018)在《不同湍流度下吹风比对涡轮导向叶片吸力面气膜冷却的影响》一文中研究指出采用基于窄带热色液晶测量的瞬态全表面传热测量技术,研究了不同主流湍流度下的吹风比对涡轮导向叶片气膜冷却的影响,获得了叶片吸力面侧圆柱形孔排气膜冷却效率和表面传热系数比的全表面分布数据。结果表明:由于气膜射流与主流掺混的相互作用会随着主流湍流度的变化而变化,因此在主流湍流度不同时,吹风比对气膜冷却效率和表面传热系数比的影响规律会有所不同;主流湍流度较小时,吹风比的增大会显着减弱气膜覆盖效果与气膜冷却效率,但是在大湍流度下,吹风比的影响较弱,尤其是在远下游区域;相同的主流湍流度条件下,吹风比的增大会使得表面传热系数提高,但是在大湍流度下,换热增强效果较弱;相同吹风比下,高湍流度下的表面传热系数比相对较小。(本文来源于《航空动力学报》期刊2018年03期)

隽智辉,王军,唐俊,杨筱沛[9](2018)在《吸力面叶尖小翼构型对轴流风机气动性能的影响》一文中研究指出叶顶间隙泄漏是造成轴流风机损失的重要原因之一,在吸力面安装叶尖小翼能抑制一定程度的叶顶间隙流动,提高轴流风机气动性能。本文数值模拟了在吸力面安装不同宽度以及长度叶尖小翼对轴流风机内部流动及性能的影响。结果表明,增大吸力面叶尖小翼宽度可减小叶顶间隙流,延缓叶顶泄漏涡的生成和脱落,使其向远离吸力面偏移,减小了分离损失。当宽度为3倍叶片厚度时,设计工况全压效率提高了0.73%。而不同长度吸力面叶尖小翼的结果对比表明,当叶尖小翼长度为0.6倍弦长时,即可达到1倍弦长叶尖小翼对叶顶间隙流动同样的改善效果。(本文来源于《流体机械》期刊2018年02期)

王力军,周辉,江金涛,贾译钧[10](2018)在《混合叶片吸力面径向槽对燃烧室性能影响的数值研究》一文中研究指出为了分析混合叶片吸力面上的径向槽对超紧凑燃烧室性能的影响,基于Wilson混合叶片的试验,设计了6种不同二次气流量的工况,利用FLUENT软件的Realizable k-ε湍流模型、混合分数/概率密度函数(PDF)燃烧模型、离散坐标(DO)辐射模型和离散相模型对燃烧室的流动及燃烧进行数值模拟。结果表明:随着二次气流量的增加,燃烧环内压力和离心力逐渐增大;二次气流量的变化对燃烧效率影响较小,对出口燃气温度分布系数、压力损失和出口污染物排放量影响较大;叶片径向槽起到了迁移环内燃烧产物和进一步掺混燃油和空气的重要作用,改善了出口燃气径向平均温度分布,提高了出口燃气温度场品质。(本文来源于《热能动力工程》期刊2018年02期)

吸力面论文开题报告

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

随着涡轮级负荷增大,跨声速涡轮中激波损失在总损失中所占比例越来越大。采用大涡模拟方法对跨声速涡轮叶栅吸力面喉部位置射流对激波/附面层干涉(SWBLI)的影响进行研究。结果表明:射流的引入会加强入射激波强度和SWBLI,但分离泡长度有所减小。激波加强了叶片表面压力波动,在各激波位置波动达到幅值,最大波动幅值达当地时均压力的13%;加入射流后,射流下游吸力面压力波动水平增加,但是SWBLI造成的流动非定常性明显减弱。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

吸力面论文参考文献

[1].吴宛洋,钟兢军,王会社.来流马赫数对吸力面小翼控制间隙泄漏效果影响的研究[J].工程热物理学报.2019

[2].刘建,乔渭阳,魏佐君,段文华.吸力面射流对涡轮激波/附面层干涉的影响[J].航空计算技术.2019

[3].王巍,唐滔,卢盛鹏,焦建雄,张庆典.水翼吸力面布置凹槽抑制空化研究[J].农业工程学报.2019

[4].黄莺,张靖周,王春华.涡轮叶片吸力面扇形孔气膜冷却效率优化[J].中南大学学报(自然科学版).2018

[5].葛健,柳阳威,周振华,陆利蓬,孙晓峰.吸力面波系分布对风扇激波噪声的影响[J].工程热物理学报.2018

[6].王宇峰,蔡乐,刘勋,周逊,王仲奇.吸力面不同吹风比切向冷气喷射对跨声速涡轮叶栅气动性能的影响[J].推进技术.2019

[7].张垲垣,李志刚,宋立明,李军.槽缝射流旋流比和密度比对涡轮端壁冷却和吸力面泛冷却性能的影响[J].西安交通大学学报.2018

[8].贺宜红,刘存良,宋辉,朱惠人,周志翔.不同湍流度下吹风比对涡轮导向叶片吸力面气膜冷却的影响[J].航空动力学报.2018

[9].隽智辉,王军,唐俊,杨筱沛.吸力面叶尖小翼构型对轴流风机气动性能的影响[J].流体机械.2018

[10].王力军,周辉,江金涛,贾译钧.混合叶片吸力面径向槽对燃烧室性能影响的数值研究[J].热能动力工程.2018

标签:;  ;  ;  ;  

吸力面论文-吴宛洋,钟兢军,王会社
下载Doc文档

猜你喜欢