杨志云:改性聚天冬氨酸交联的导电水凝胶的制备与性能及其在柔性应变传感器中的应用论文

杨志云:改性聚天冬氨酸交联的导电水凝胶的制备与性能及其在柔性应变传感器中的应用论文

本文主要研究内容

作者杨志云(2019)在《改性聚天冬氨酸交联的导电水凝胶的制备与性能及其在柔性应变传感器中的应用》一文中研究指出:导电水凝胶结合了导电材料和水凝胶的优越特性,具有良好的机械性能以及卓越的电子传输与离子传输能力。作为一种新型的功能材料已引起了广泛关注,并且成为构筑柔性传感器的理想材料。聚天冬氨酸(PASP)含有丰富的羧基和酰胺基团,即使进行侧链修饰也显示出良好的生物相容性和可生物降解性,并且由于其蛋白质链结构成为一种非常有前景的生物材料。因此,本文从聚天冬氨酸和导电水凝胶的结构和性能出发,制备了两种性能优异的可生物降解导电水凝胶,研究了其在柔性应变传感器中的应用。本文以L-天冬氨酸为原料,采用酸催化热缩聚法合成了聚琥珀酰亚胺(PSI),然后通过乙醇胺(EA)的部分开环反应和丙烯酰氯(AC)的丙烯酰化反应改性PSI,随后进行水解制备了具有丙烯酰基侧链的可生物降解的大分子交联剂(MPASP)。以丙烯酸(AA)为单体,可生物降解的大分子MPASP为共价交联剂,FeCl3为物理交联剂,过硫酸铵(APS)为引发剂,在水溶液中进行自由基聚合制备了可生物降解的MPASP-PAA/Fe3+导电水凝胶。研究结果表明,MPASP向水凝胶网状结构中引入的酰胺键和酯键赋予了水凝胶良好的生物相容性和可生物降解性;MPASP和PAA的羧基与三价铁离子之间的动态离子相互作用以及分子链间的氢键作用充当可逆的牺牲键通过断裂-重组提高了水凝胶的能量耗散效率;MPASP和PAA之间的共价键形成的化学交联网络作为弹性支撑网络;同时,FeCl3、MPASP和PAA提供的大量导电离子使水凝胶具有良好的导电性。这些特性实现了水凝胶材料中多重组分的协同效应机制,水凝胶展现出高透明度(96.1%)、较好的溶胀性能(85.84 g/g)、高拉伸/压缩强度(150 kPa/1043.5 kPa)、较高的拉伸性(339%)和电导率(0.1173 S·m-1)。此外,该水凝胶还具有良好的线性响应性和应变灵敏度(在250%应变时灵敏度可达4.93),在重复拉伸卸载实验中,显示出高的重复性和良好的稳定性。当用作柔性应变传感器时,不仅能够即时监测手指、手腕、握拳和屈肘等大幅度的人体运动,还能够识别发声、吞咽等微弱的信号,具有快速的反应能力、良好的可重复性和稳定性。以AA和丙烯酰胺(AM)为单体,可生物降解的MPASP大分子为交联剂,APS为引发剂,并加入氧化石墨烯(GO)分散液,通过自由基聚合制备了可生物降解的MPASP-P(AA-co-AM)/GO导电水凝胶。研究结果表明,GO的加入,对水凝胶的溶胀性能和力学性能有着显著的影响,当MPASP用量为2.5 wt%/(AA+AM)、GO用量为0.3 wt%/(AA+AM)、AM和AA配比为16:4、APS用量为0.8 mol%/(AA+AM),水凝胶的溶胀度为84.96 g/g,压缩强度为775.45 kPa、拉伸强度293 kPa、断裂伸长率可达523%。此外,MPASP-P(AA-co-AM)/GO水凝胶还表现出良好的电-机械性能,随着拉伸应变的增加,水凝胶的电阻变化率和灵敏度因子基本呈线性增加,显示出较高的灵敏度(在130%应变时灵敏度可达3.55)。该水凝胶还展现出高的可重复性和良好的稳定性,可实现对应变量的感知与检测。当用作应变传感器时,既能检测微小的声带振动,又能检测大幅度的手指、手腕、握拳和屈肘等人体运动。

Abstract

dao dian shui ning jiao jie ge le dao dian cai liao he shui ning jiao de you yue te xing ,ju you liang hao de ji xie xing neng yi ji zhuo yue de dian zi chuan shu yu li zi chuan shu neng li 。zuo wei yi chong xin xing de gong neng cai liao yi yin qi le an fan guan zhu ,bing ju cheng wei gou zhu rou xing chuan gan qi de li xiang cai liao 。ju tian dong an suan (PASP)han you feng fu de suo ji he xian an ji tuan ,ji shi jin hang ce lian xiu shi ye xian shi chu liang hao de sheng wu xiang rong xing he ke sheng wu jiang jie xing ,bing ju you yu ji dan bai zhi lian jie gou cheng wei yi chong fei chang you qian jing de sheng wu cai liao 。yin ci ,ben wen cong ju tian dong an suan he dao dian shui ning jiao de jie gou he xing neng chu fa ,zhi bei le liang chong xing neng you yi de ke sheng wu jiang jie dao dian shui ning jiao ,yan jiu le ji zai rou xing ying bian chuan gan qi zhong de ying yong 。ben wen yi L-tian dong an suan wei yuan liao ,cai yong suan cui hua re su ju fa ge cheng le ju hu po xian ya an (PSI),ran hou tong guo yi chun an (EA)de bu fen kai huan fan ying he bing xi xian lv (AC)de bing xi xian hua fan ying gai xing PSI,sui hou jin hang shui jie zhi bei le ju you bing xi xian ji ce lian de ke sheng wu jiang jie de da fen zi jiao lian ji (MPASP)。yi bing xi suan (AA)wei chan ti ,ke sheng wu jiang jie de da fen zi MPASPwei gong jia jiao lian ji ,FeCl3wei wu li jiao lian ji ,guo liu suan an (APS)wei yin fa ji ,zai shui rong ye zhong jin hang zi you ji ju ge zhi bei le ke sheng wu jiang jie de MPASP-PAA/Fe3+dao dian shui ning jiao 。yan jiu jie guo biao ming ,MPASPxiang shui ning jiao wang zhuang jie gou zhong yin ru de xian an jian he zhi jian fu yu le shui ning jiao liang hao de sheng wu xiang rong xing he ke sheng wu jiang jie xing ;MPASPhe PAAde suo ji yu san jia tie li zi zhi jian de dong tai li zi xiang hu zuo yong yi ji fen zi lian jian de qing jian zuo yong chong dang ke ni de xi sheng jian tong guo duan lie -chong zu di gao le shui ning jiao de neng liang hao san xiao lv ;MPASPhe PAAzhi jian de gong jia jian xing cheng de hua xue jiao lian wang lao zuo wei dan xing zhi cheng wang lao ;tong shi ,FeCl3、MPASPhe PAAdi gong de da liang dao dian li zi shi shui ning jiao ju you liang hao de dao dian xing 。zhe xie te xing shi xian le shui ning jiao cai liao zhong duo chong zu fen de xie tong xiao ying ji zhi ,shui ning jiao zhan xian chu gao tou ming du (96.1%)、jiao hao de rong zhang xing neng (85.84 g/g)、gao la shen /ya su jiang du (150 kPa/1043.5 kPa)、jiao gao de la shen xing (339%)he dian dao lv (0.1173 S·m-1)。ci wai ,gai shui ning jiao hai ju you liang hao de xian xing xiang ying xing he ying bian ling min du (zai 250%ying bian shi ling min du ke da 4.93),zai chong fu la shen xie zai shi yan zhong ,xian shi chu gao de chong fu xing he liang hao de wen ding xing 。dang yong zuo rou xing ying bian chuan gan qi shi ,bu jin neng gou ji shi jian ce shou zhi 、shou wan 、wo quan he qu zhou deng da fu du de ren ti yun dong ,hai neng gou shi bie fa sheng 、tun yan deng wei ruo de xin hao ,ju you kuai su de fan ying neng li 、liang hao de ke chong fu xing he wen ding xing 。yi AAhe bing xi xian an (AM)wei chan ti ,ke sheng wu jiang jie de MPASPda fen zi wei jiao lian ji ,APSwei yin fa ji ,bing jia ru yang hua dan mo xi (GO)fen san ye ,tong guo zi you ji ju ge zhi bei le ke sheng wu jiang jie de MPASP-P(AA-co-AM)/GOdao dian shui ning jiao 。yan jiu jie guo biao ming ,GOde jia ru ,dui shui ning jiao de rong zhang xing neng he li xue xing neng you zhao xian zhe de ying xiang ,dang MPASPyong liang wei 2.5 wt%/(AA+AM)、GOyong liang wei 0.3 wt%/(AA+AM)、AMhe AApei bi wei 16:4、APSyong liang wei 0.8 mol%/(AA+AM),shui ning jiao de rong zhang du wei 84.96 g/g,ya su jiang du wei 775.45 kPa、la shen jiang du 293 kPa、duan lie shen chang lv ke da 523%。ci wai ,MPASP-P(AA-co-AM)/GOshui ning jiao hai biao xian chu liang hao de dian -ji xie xing neng ,sui zhao la shen ying bian de zeng jia ,shui ning jiao de dian zu bian hua lv he ling min du yin zi ji ben cheng xian xing zeng jia ,xian shi chu jiao gao de ling min du (zai 130%ying bian shi ling min du ke da 3.55)。gai shui ning jiao hai zhan xian chu gao de ke chong fu xing he liang hao de wen ding xing ,ke shi xian dui ying bian liang de gan zhi yu jian ce 。dang yong zuo ying bian chuan gan qi shi ,ji neng jian ce wei xiao de sheng dai zhen dong ,you neng jian ce da fu du de shou zhi 、shou wan 、wo quan he qu zhou deng ren ti yun dong 。

论文参考文献

  • [1].聚氨酯基柔性应力应变传感器的制备及研究[D]. 闫绍村.石河子大学2019
  • [2].石墨烯柔性应变传感器时间响应特性研究[D]. 徐炜.中国工程物理研究院2019
  • [3].基于碳基纳米材料的柔性应变传感器研究[D]. 艾琴琴.电子科技大学2019
  • [4].可修复应变传感器的设计、制备及其特性研究[D]. 姚玉锦.电子科技大学2019
  • [5].基于环状叠层结构的柔性纤维应变传感器研究与应用[D]. 赵雨农.合肥工业大学2019
  • [6].基于FBG宏应变空间分布的梁桥监测研究[D]. 王维俊.苏州科技大学2019
  • [7].CNTs/Ecoflex薄膜柔性应变传感器的设计、性能及应用研究[D]. 丁会珍.郑州大学2019
  • [8].柔性纤维状多孔导电复合材料制备及其敏感行为研究[D]. 王晓峥.郑州大学2019
  • [9].包覆结构对纱线应变传感器传感性能的影响[D]. 周淑雯.东华大学2018
  • [10].柔性可穿戴应变传感器的制备及性能研究[D]. 王亚龙.郑州大学2018
  • 读者推荐
  • [1].PVA/PAA基超分子水凝胶的制备及其性能研究[D]. 毛云云.天津工业大学2019
  • [2].可调3D纳米结构导电聚合物水凝胶在储能方面的应用[D]. 杨春英.河北大学2019
  • [3].基于两性离子聚合物构建的粘附水凝胶制备及性能研究[D]. 王柳芳.华东理工大学2019
  • [4].高强度柔性双网络水凝胶的制备及其性能研究[D]. 王增强.兰州大学2019
  • [5].一种高强度联合双网络水凝胶的制备与性能研究[D]. 张孟.长春工业大学2019
  • [6].一种功能性柔性传感器的研究[D]. 张劲杰.中北大学2019
  • [7].基于多重刺激响应性的智能执行器及多功能导电水凝胶[D]. 王涛平.苏州大学2018
  • [8].柔性聚苯胺基导电水凝胶的制备及其性能研究[D]. 叶瑾.江南大学2018
  • [9].导电水凝胶的制备及其在生物电化学传感器上的应用[D]. 张彩芸.西北师范大学2018
  • [10].基于聚合物凝胶的柔性传感器制备及性能研究[D]. 李小康.大连理工大学2017
  • 论文详细介绍

    论文作者分别是来自太原理工大学的杨志云,发表于刊物太原理工大学2019-07-26论文,是一篇关于聚天冬氨酸论文,丙烯酸论文,丙烯酰胺论文,氧化石墨烯论文,导电水凝胶论文,柔性传感器论文,太原理工大学2019-07-26论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自太原理工大学2019-07-26论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。

    标签:;  ;  ;  ;  ;  ;  ;  

    杨志云:改性聚天冬氨酸交联的导电水凝胶的制备与性能及其在柔性应变传感器中的应用论文
    下载Doc文档

    猜你喜欢