导读:本文包含了强限制光波导论文开题报告文献综述及选题提纲参考文献,主要关键词:强限制光波导,脊形光波导,悬挂式波导,紫外光刻技术
强限制光波导论文文献综述
杨波[1](2012)在《SU-8强限制光波导及其器件研究》一文中研究指出随着光纤通信技术和光传感技术的快速发展,集成光子器件特别是集成光滤波器由于其低成本、高集成度等特点引起了广泛的关注。在LiNbO3、SiO2、 Si、InP和聚合物等各类集成光学材料中,聚合物材料在降低器件成本、减小器件损耗等方面有着巨大的优势。对于任何材料的集成光子器件,减小器件尺寸、提高集成度是一个长期的发展方向。强限制光波导是实现小型化集成光子器件的最为有效的方法。本文基于SU-8聚合物材料,对脊形光波导和悬挂式光波导两种强限制光波导,以及基于SU-8脊形光波导的小型化阵列波导光栅和微环谐振器进行了深入的理论和实验研究。回顾了光波导基本理论和几种常用的数值计算方法。首先介绍了求解平板波导的解析方法和求解条形波导的近似方法。为了精确求解复杂波导及其器件问题,必须采用数值模拟方法。对有限差分方法、光束传播方法和时域有限差分方法等几种常用的数值计算方法进行了介绍。研究了SU-8脊形光波导这种新型强限制光波导的导波特性。通过对整个工艺过程的调试,成功制作了SU-8脊形光波导。实验得到具有不同波导宽度的SU-8脊形光波导的传输损耗为0.24~0.15dB/mm。并且,验证了这种波导可承受75μm的弯曲半径,因此SU-8脊形光波导具有提高器件集成度的巨大潜力。基于SU-8脊形光波导,本文研究了阵列波导光栅(AWG)和微环谐振器(MRR)两种典型的集成光滤波器。首先对基于SU-8脊形光波导的小型化阵列波导光栅进行了设计制作。由于所用波导的强限制特性,研制出的AWG尺寸仅为基于传统掩埋型SU-8波导的同类器件的1/40,从而大大提高了器件集成度。通过选取合适的波导尺寸,成功消除了AWG的偏振相关性,使TE和TM模式的信道中心波长重合。热光调谐研究表明,所研制的AWG滤波器具有调谐效率高、大范围可调等优势。另外我们还研究了基于SU-8脊形光波导的微环谐振器。采用耦合区波导的宽度进行局部减小的设计,研制出了小型化MRR,并对其光谱特性进行了表征。为了进一步增加光场限制,减小波导的弯曲半径,提高器件集成度,我们对SU-8脊形光波导进行了结构改进。通过将SU-8脊形光波导的Si02下包层腐蚀掉,获得了在侧向和纵向都为强限制型的悬空波导,其弯曲半径可以小至7gm,比相应的脊形光波导小一个数量级。为了实现这种超高集成度的悬空型光波导,研制出低损耗(<0.1dB)的支撑臂结构。基于这种悬空型光波导制作出微盘谐振器,获得了较大自由光谱范围和高消光比的响应特性。(本文来源于《浙江大学》期刊2012-04-27)
杨柳[2](2009)在《基于强限制光波导的微环谐振器及其热光特性研究》一文中研究指出器件小型化的研究一直是集成光电子器件的发展方向之一。利用强限制光波导结构是实现器件小型化设计的一种非常有效的途径。微环谐振器(MRR)是集成光电子回路的重要组成单元,它可以实现光无源/有源器件的众多功能,因此MRR的相关研究至关重要。本论文围绕SOI(Silicon-on-insulator)和SU-8两种材料,研究了两种强限制光波导结构:SOI纳米线光波导和SU-8脊型光波导,在此基础上,对基于强限制光波导的小型化MRR及其热光特性进行了深入的理论和实验研究。集成光电子器件的理论基础是光波导电磁场理论及其数值计算方法。在此,给出了包括有限差分方法(FDM)、光束传输方法(BPM)及时域有限差分方法(FDTD)等的分析求解过程,并将其应用到光波导器件的分析研究中。本文利用分步FDTD方法对透镜光纤(TLF)与SOI纳米线光波导的端面耦合系统进行了分析:考虑到光纤的旋转对称性结构,我们采用旋转体FDTD方法对磨锥TLF和拉锥TLF的聚焦特性进行了分析,把叁维问题转化为二维问题,节省了计算资源,提高了计算效率。计算结果表明拉锥TLF具有较强的聚焦特性,但是相对于磨锥TLF,其传输损耗比较大。因为SOI纳米线光波导不具备旋转对称性,所以对光纤-波导耦合系统的特性分析,我们使用了标准的叁维FDTD方法。仿真结果显示拉锥TLF光斑小,与Si纳米线光波导的耦合效率高;但是耦合系统总的损耗(耦合损耗与TLF传输损耗之和)与磨锥TLF耦合时计算出的总的损耗相差不多。在热传导理论基础上建立了光波导的热学分析模型,提出了亚微米宽的新型热电极,并把它应用到SOI脊型纳米线光波导上。利用自建的热学分析模型,对该光波导结构进行了数值分析,并与传统的掩埋型光波导进行了热学性能的比较。结果显示,具有新型热电极的SOI脊型纳米线光波导结构所需电极功耗低,约为后者的1/10,响应速度快,约为后者的2倍。不仅如此,其加工工艺简单(仅需一次光刻工艺),制作成本可大大降低。在此基础上,我们对该光波导结构进行了光学性能优化,并利用MRR结构设计出一种超小型、低功耗(5mW)、大范围可调(20nm)的热光可调谐滤波器。对SOI超小型光波导器件的制作工艺进行了总结,并给出了新型热电极下的SOI脊型纳米线光波导热光器件的工艺流程。对SU-8脊型光波导(空气为波导的上包层)的制作工艺进行了研究,并对两种制作工艺(纳米压印技术和直接紫外光刻技术)进行了比较。后者工艺简单,对于我们设计的SU-8光波导结构(微米量级)仍然能够提供足够的工艺容差,因此本文中关于SU-8光器件的制作都是利用直接紫外光刻技术完成的,器件表征结果显示利用该技术能够制作出低损耗的SU-8光波导及器件,如小型化多模干涉(MMI)耦合器、MRR等。利用SU-8脊型光波导结构,通过在MMI区域引入二次曲线锥形结构,设计出一种基于GI(General Interference)干涉机制的小型化2×2 MMI耦合器,并利用直接紫外光刻技术,完成了该器件的制作,测试结果显示该器件具有损耗低、均匀性好、带宽大等优点。把小型化2×2锥形MMI耦合器引入到MRR耦合区,研制出了小型化的MRR器件,对其光学性能,包括光谱响应、偏振相关特性等进行了表征,并对其热光效应进行了实验研究,测试结果显示温度升高100℃,其谐振波长漂移量将超过10nm,该性质对于研制大范围可调谐的滤波器件十分有利。针对SU-8脊型光波导的强限制作用及MRR的谐振增强效应,我们对MRR的热光非线性效应进行了探索性实验研究,通过对测试结果的分析,我们得到了SU-8材料对红外光的吸收系数约为0.179 cm~(-1),为实现全光控制提供了一定基础。(本文来源于《浙江大学》期刊2009-04-06)
强限制光波导论文开题报告
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
器件小型化的研究一直是集成光电子器件的发展方向之一。利用强限制光波导结构是实现器件小型化设计的一种非常有效的途径。微环谐振器(MRR)是集成光电子回路的重要组成单元,它可以实现光无源/有源器件的众多功能,因此MRR的相关研究至关重要。本论文围绕SOI(Silicon-on-insulator)和SU-8两种材料,研究了两种强限制光波导结构:SOI纳米线光波导和SU-8脊型光波导,在此基础上,对基于强限制光波导的小型化MRR及其热光特性进行了深入的理论和实验研究。集成光电子器件的理论基础是光波导电磁场理论及其数值计算方法。在此,给出了包括有限差分方法(FDM)、光束传输方法(BPM)及时域有限差分方法(FDTD)等的分析求解过程,并将其应用到光波导器件的分析研究中。本文利用分步FDTD方法对透镜光纤(TLF)与SOI纳米线光波导的端面耦合系统进行了分析:考虑到光纤的旋转对称性结构,我们采用旋转体FDTD方法对磨锥TLF和拉锥TLF的聚焦特性进行了分析,把叁维问题转化为二维问题,节省了计算资源,提高了计算效率。计算结果表明拉锥TLF具有较强的聚焦特性,但是相对于磨锥TLF,其传输损耗比较大。因为SOI纳米线光波导不具备旋转对称性,所以对光纤-波导耦合系统的特性分析,我们使用了标准的叁维FDTD方法。仿真结果显示拉锥TLF光斑小,与Si纳米线光波导的耦合效率高;但是耦合系统总的损耗(耦合损耗与TLF传输损耗之和)与磨锥TLF耦合时计算出的总的损耗相差不多。在热传导理论基础上建立了光波导的热学分析模型,提出了亚微米宽的新型热电极,并把它应用到SOI脊型纳米线光波导上。利用自建的热学分析模型,对该光波导结构进行了数值分析,并与传统的掩埋型光波导进行了热学性能的比较。结果显示,具有新型热电极的SOI脊型纳米线光波导结构所需电极功耗低,约为后者的1/10,响应速度快,约为后者的2倍。不仅如此,其加工工艺简单(仅需一次光刻工艺),制作成本可大大降低。在此基础上,我们对该光波导结构进行了光学性能优化,并利用MRR结构设计出一种超小型、低功耗(5mW)、大范围可调(20nm)的热光可调谐滤波器。对SOI超小型光波导器件的制作工艺进行了总结,并给出了新型热电极下的SOI脊型纳米线光波导热光器件的工艺流程。对SU-8脊型光波导(空气为波导的上包层)的制作工艺进行了研究,并对两种制作工艺(纳米压印技术和直接紫外光刻技术)进行了比较。后者工艺简单,对于我们设计的SU-8光波导结构(微米量级)仍然能够提供足够的工艺容差,因此本文中关于SU-8光器件的制作都是利用直接紫外光刻技术完成的,器件表征结果显示利用该技术能够制作出低损耗的SU-8光波导及器件,如小型化多模干涉(MMI)耦合器、MRR等。利用SU-8脊型光波导结构,通过在MMI区域引入二次曲线锥形结构,设计出一种基于GI(General Interference)干涉机制的小型化2×2 MMI耦合器,并利用直接紫外光刻技术,完成了该器件的制作,测试结果显示该器件具有损耗低、均匀性好、带宽大等优点。把小型化2×2锥形MMI耦合器引入到MRR耦合区,研制出了小型化的MRR器件,对其光学性能,包括光谱响应、偏振相关特性等进行了表征,并对其热光效应进行了实验研究,测试结果显示温度升高100℃,其谐振波长漂移量将超过10nm,该性质对于研制大范围可调谐的滤波器件十分有利。针对SU-8脊型光波导的强限制作用及MRR的谐振增强效应,我们对MRR的热光非线性效应进行了探索性实验研究,通过对测试结果的分析,我们得到了SU-8材料对红外光的吸收系数约为0.179 cm~(-1),为实现全光控制提供了一定基础。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
强限制光波导论文参考文献
[1].杨波.SU-8强限制光波导及其器件研究[D].浙江大学.2012
[2].杨柳.基于强限制光波导的微环谐振器及其热光特性研究[D].浙江大学.2009