本文主要研究内容
作者(2019)在《Glacier mapping based on Chinese high-resolution remote sensing GF-1 satellite and topographic data》一文中研究指出:The precise glacier boundary is a fundamental requirement for glacier inventory, the assessment of climate change and water management in remote mountain areas. However, some glaciers in mountain areas are covered by debris. The high spatial resolution images bring opportunities in mapping debris-covered glaciers. To discuss the capability of Chinese GaoFen-1 satellite lacking the short wave infrared band and thermal infrared band in mapping glaciers, this study distinguished supraglacial terrain from surrounding debris by combining GaoFen-1(GF-1) wide-field-view(WFV) images, the ratio of the thermal infrared imagery and morphometric parameters(DEM and slope) with 30 m resolution. The overall accuracy of 90.94% indicated that this method was effective for mapping supraglacial terrain in mountain areas. Comparing this result with the combination of GF-1 WFV and low-resolution morphometric parameters shows that a high-quality DEM and the thermal infrared band enhanced the accuracy of glacier mapping especially debris-covered ice in steep terrain. The user’s and producer’s accuracies of glacier area were also improved from 89.67% and 85.95% to 92.83% and 90.34%, respectively. GF data is recommended for mapping heavily debris-covered glaciers and will be combined with SAR data for future studies.
Abstract
The precise glacier boundary is a fundamental requirement for glacier inventory, the assessment of climate change and water management in remote mountain areas. However, some glaciers in mountain areas are covered by debris. The high spatial resolution images bring opportunities in mapping debris-covered glaciers. To discuss the capability of Chinese GaoFen-1 satellite lacking the short wave infrared band and thermal infrared band in mapping glaciers, this study distinguished supraglacial terrain from surrounding debris by combining GaoFen-1(GF-1) wide-field-view(WFV) images, the ratio of the thermal infrared imagery and morphometric parameters(DEM and slope) with 30 m resolution. The overall accuracy of 90.94% indicated that this method was effective for mapping supraglacial terrain in mountain areas. Comparing this result with the combination of GF-1 WFV and low-resolution morphometric parameters shows that a high-quality DEM and the thermal infrared band enhanced the accuracy of glacier mapping especially debris-covered ice in steep terrain. The user’s and producer’s accuracies of glacier area were also improved from 89.67% and 85.95% to 92.83% and 90.34%, respectively. GF data is recommended for mapping heavily debris-covered glaciers and will be combined with SAR data for future studies.
论文参考文献
论文详细介绍
论文作者分别是来自Sciences in Cold and Arid Regions的,发表于刊物Sciences in Cold and Arid Regions2019年03期论文,是一篇关于,Sciences in Cold and Arid Regions2019年03期论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自Sciences in Cold and Arid Regions2019年03期论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。