本文主要研究内容
作者(2019)在《Comparison between the surface defects caused by Al2O3 and TiN inclusions in interstitial-free steel auto sheets》一文中研究指出:Al2O3 and TiN inclusions in interstitial-free(IF) steel deteriorate the properties of the steel. To decrease the defects of cold-rolled sheet, it is important to clearly distinguish between the degrees of damage caused by these two inclusions on the surface quality of the steel. In this study, a nanoindenter was used to test the mechanical properties of the inclusions, and the distribution and size of the inclusions were obtained by scanning electron microscopy(SEM). It was found that when only mechanical properties are considered, TiN inclusions are more likely to cause defects than Al2O3 inclusions of the same size during the rolling process. However, Al2O3 inclusions are generally more inclined to cause defects in the rolling process than TiN inclusions because of their distribution characteristic in the thickness direction. The precipitation of Al2O3 and TiN was obtained through thermodynamical calculations. The growth laws of inclusions at different cooling rates were calculated by solidification and segregation models. The results show that the precipitation regularity is closely related to the distribution law of the inclusions in IF slabs along the thickness direction.
Abstract
Al2O3 and TiN inclusions in interstitial-free(IF) steel deteriorate the properties of the steel. To decrease the defects of cold-rolled sheet, it is important to clearly distinguish between the degrees of damage caused by these two inclusions on the surface quality of the steel. In this study, a nanoindenter was used to test the mechanical properties of the inclusions, and the distribution and size of the inclusions were obtained by scanning electron microscopy(SEM). It was found that when only mechanical properties are considered, TiN inclusions are more likely to cause defects than Al2O3 inclusions of the same size during the rolling process. However, Al2O3 inclusions are generally more inclined to cause defects in the rolling process than TiN inclusions because of their distribution characteristic in the thickness direction. The precipitation of Al2O3 and TiN was obtained through thermodynamical calculations. The growth laws of inclusions at different cooling rates were calculated by solidification and segregation models. The results show that the precipitation regularity is closely related to the distribution law of the inclusions in IF slabs along the thickness direction.
论文参考文献
论文详细介绍
论文作者分别是来自International Journal of Minerals Metallurgy and Materials的,发表于刊物International Journal of Minerals Metallurgy and Materials2019年02期论文,是一篇关于,International Journal of Minerals Metallurgy and Materials2019年02期论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自International Journal of Minerals Metallurgy and Materials2019年02期论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。
标签:International Journal of Minerals Metallurgy and Materials2019年02期论文;