本文主要研究内容
作者(2019)在《Quinclorac Resistance in Echinochloa crus-galli from China》一文中研究指出:Echinochloa crus-galli is a major weed in rice fields in China, and quinclorac has been long used for its control. Over-reliance of quinclorac has resulted in quinclorac resistance in E. crus-galli. Two resistant(R) E. crus-galli populations from Hunan, China were confirmed to be at least 78-fold more resistant to quinclorac than the susceptible(S) population. No difference in foliar uptake of 14 C-labelled quinclorac was detected between the R and S plants. However, a higher level of 14 C translocation and a lower level of quinclorac metabolism were found in the R plants. Basal and induced expression levels of β-cyanoalanine synthase(β-CAS) gene and β-CAS activity were not significantly different between the R and S plants. However, the induction expression of 1-aminocyclopropane-1-carboxylic acid oxidase(ACO1) gene by quinclorac treatment was evident in the S plants but not in the R plants. Quinclorac resistance in the two resistant E. crus-galli populations was not likely to be related to foliar uptake, translocation or metabolism of quinclorac, nor to cyanide detoxification via β-CAS. Thus, target-site based quinclorac signal reception and transduction and regulation of the ethylene synthesis pathway should be the focus for further research.
Abstract
Echinochloa crus-galli is a major weed in rice fields in China, and quinclorac has been long used for its control. Over-reliance of quinclorac has resulted in quinclorac resistance in E. crus-galli. Two resistant(R) E. crus-galli populations from Hunan, China were confirmed to be at least 78-fold more resistant to quinclorac than the susceptible(S) population. No difference in foliar uptake of 14 C-labelled quinclorac was detected between the R and S plants. However, a higher level of 14 C translocation and a lower level of quinclorac metabolism were found in the R plants. Basal and induced expression levels of β-cyanoalanine synthase(β-CAS) gene and β-CAS activity were not significantly different between the R and S plants. However, the induction expression of 1-aminocyclopropane-1-carboxylic acid oxidase(ACO1) gene by quinclorac treatment was evident in the S plants but not in the R plants. Quinclorac resistance in the two resistant E. crus-galli populations was not likely to be related to foliar uptake, translocation or metabolism of quinclorac, nor to cyanide detoxification via β-CAS. Thus, target-site based quinclorac signal reception and transduction and regulation of the ethylene synthesis pathway should be the focus for further research.
论文参考文献
论文详细介绍
论文作者分别是来自Rice Science的,发表于刊物Rice Science2019年05期论文,是一篇关于,Rice Science2019年05期论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自Rice Science2019年05期论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。